Skip to main content
Log in

Coronary flow reserve and relative flow reserve measured by N-13 ammonia PET for characterization of coronary artery disease

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

We evaluated the relationships between coronary flow reserve (CFR) and relative flow reserve (RFR) measured by N-13 ammonia positron emission tomography (PET) for characterization of epicardial coronary artery disease (CAD).

Methods

Sixty-nine consecutive stable angina patients underwent N-13 ammonia PET, coronary computed tomography angiography (CCTA), and if necessary, invasive coronary angiography (CAG) within 2 weeks. Myocardial blood flow (MBF), CFR, RFR, and coronary vascular resistance of the reference arterial territory (CVRref) were measured by N-13 ammonia PET. The presence of significant stenosis (SS) and diffuse atherosclerosis (DA) was evaluated on CCTA and CAG. Functional parameters measured by PET were compared among arteries with and without SS and DA.

Results

Arteries with SS and those with DA showed significantly lower stress MBF, as compared to those without. RFR was significantly lower in arteries with SS as compared to those without, while CFR was not. CFR was significantly lower in arteries with DA as compared to those without, while RFR was not. Among arteries without SS, CFR was significantly lower in those with DA as compared to those without. However, among arteries with SS, CFR was similar between those with and without DA. In contrast, RFR was significantly lower in arteries with SS, regardless of the presence of DA. CFR and RFR showed a weak positive correlation (r = 0.269) with discordance in 24 cases (35%). Among the arteries with CFR-RFR discordance, the prevalence of DA was significantly higher in those with low CFR but preserved RFR, as compared to those with preserved CFR but low RFR (75 vs 25%, p = 0.028). CVRref was significantly higher in arteries with DA, implicating a correlation of DA with underlying microvascular disease.

Conclusions

CFR and RFR measured by myocardial perfusion PET could provide a comprehensive information for characterization of epicardial CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Bruyne B, Baudhuin T, Melin JA, Pijls NH, Sys SU, Bol A, et al. Coronary flow reserve calculated from pressure measurements in humans. Valid positron emission tomography. Circulation. 1994;89:1013–22.

    Article  PubMed  Google Scholar 

  2. Stuijfzand WJ, Uusitalo V, Kero T, Danad I, Rijnierse MT, Saraste A, et al. Relative flow reserve derived from quantitative perfusion imaging may not outperform stress myocardial blood flow for identification of hemodynamically significant coronary artery disease. Circ Cardiovasc Imaging. 2015;8:e002400.

    Article  PubMed  Google Scholar 

  3. Meuwissen M, Chamuleau SAJ, Siebes M, Schotborgh CE, Koch KT, de Winter RJ, et al. Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation. 2001;103:184–7.

    Article  CAS  PubMed  Google Scholar 

  4. Meimoun P, Sayah S, Luycx-Bore A, Boulanger J, Elmkies F, Benali T, et al. Comparison between non-invasive coronary flow reserve and fractional flow reserve to assess the functional significance of left anterior descending artery stenosis of intermediate severity. J Am Soc Echocardiogr. 2011;24:374–81.

    Article  PubMed  Google Scholar 

  5. Johnson NP, Kirkeeide RL, Gould KL. Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? JACC Cardiovasc Imaging. 2012;5:193–202.

    Article  PubMed  Google Scholar 

  6. Echavarria-Pinto M, Escaned J, Macias E, Medina M, Gonzalo N, Petraco R, et al. Disturbed coronary hemodynamics in vessels with intermediate stenoses evaluated with fractional flow reserve a combined analysis of epicardial and microcirculatory involvement in ischemic heart disease. Circulation. 2013;128:2557–66.

    Article  PubMed  Google Scholar 

  7. Schelbert HR. FFR and Coronary Flow Reserve Friends or Foes? JACC Cardiovasc Imaging. 2012;5:203–6.

    Article  PubMed  Google Scholar 

  8. Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H. Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. JACC Cardiovasc Imaging. 2009;2:751–8.

    Article  PubMed  Google Scholar 

  9. Kajander SA, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, Sipila HT, Teras M, Maki M, Airaksinen J, Hartiala J, Knuuti J. Clinical value of absolute quantification of myocardial perfusion with 15O-water in coronary artery disease. Circ Cardiovasc Imaging. 2011;4:678–84.

    Article  PubMed  Google Scholar 

  10. Thomassen A, Petersen H, Johansen A, Braad PE, Diederichsen AC, Mickley H, et al. Quantitative myocardial perfusion by O-15-water PET: individualized vs. standardized vascular territories. Eur Heart J Cardiovasc Imaging. 2015;16:970–6.

    PubMed  Google Scholar 

  11. Bigi R, Cortigiani L, Colombo P, Desideri A, Bax JJ, Parodi O. Prognostic and clinical correlates of angiographically diffuse non-obstructive coronary lesions. Heart. 2003;89:1009–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gould KL, Johnson NP, Bateman TM, Beanlands RS, Bengel FM, Bober R, et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol. 2013;62:1639–53.

    Article  PubMed  Google Scholar 

  13. Mori Y, Manabe O, Naya M, Tomiyama Y, Yoshinaga K, Magota K, et al. Improved spillover correction model to quantify myocardial blood flow by 11C-acetate PET: comparison with 15O-H2O PET. Ann Nucl Med. 2015;29:15–20.

    Article  CAS  PubMed  Google Scholar 

  14. Cho SG, Kim JH, Cho JY, Kim HS, Bom HS. Myocardial blood flow and flow reserve in proximal and mid-to-distal lesions of left anterior descending artery measured by N-13 ammonia PET/CT. Nucl Med Mol Imaging. 2013;47:158–65.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cho SG, Kim JH, Cho JY, Kim HS, Kwon SY, Bom HS. Characteristics of anginal patients with high resting myocardial blood flow measured with N-13 ammonia PET/CT. Nucl Med Commun. 2015;36:619–24.

    Article  CAS  PubMed  Google Scholar 

  16. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. J Am Soc Echocardiogr. 2002;15:463–7.

    Article  Google Scholar 

  17. Valenta I, Antoniou A, Marashdeh W, Leucker T, Kasper E, Jones SR, et al. PET-measured longitudinal flow gradient correlates with invasive fractional flow reserve in CAD patients. Eur Heart J Cardiovasc Imaging. 2016;. doi:10.1093/ehjci/jew116.

    PubMed  Google Scholar 

  18. Maddox TM, Stanislawski MA, Grunwald GK, Bradley SM, Ho PM, Tsai TT, et al. Nonobstructive coronary artery disease and risk of myocardial infarction. JAMA. 2014;312:1754–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, et al. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation. 2011;124:2574–609.

    Article  PubMed  Google Scholar 

  20. De Bruyne B, Bartunek J, Sys SU, Heyndrickx GR. Relation between myocardial fractional flow reserve calculated from coronary pressure measurements and exercise-induced myocardial ischemia. Circulation. 1995;92:39–46.

    Article  PubMed  Google Scholar 

  21. Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of 13N-ammonia myocardial perfusion PET: added value of myocardial flow reserve. J Nucl Med. 2012;53:1230–4.

    Article  CAS  PubMed  Google Scholar 

  22. Danad I, Uusitalo V, Kero T, Saraste A, Raijmakers PG, Lammertsma AA, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [15O]H2O PET imaging. J Am Coll Cardiol. 2014;64:1464–75.

    Article  PubMed  Google Scholar 

  23. Lee JM, Kim CH, Koo BK, Hwang D, Park J, Zhang J, et al. Integrated myocardial perfusion imaging diagnostics improve detection of functionally significant coronary artery stenosis by 13N-ammonia positron emission tomography. Circ Cardiovasc Imaging. 2016; 9. doi:10.1161/CIRCIMAGING.116.004768.

  24. Pijls NH, Klauss V, Siebert U, Powers E, Takazawa K, Fearon WF, et al. Coronary pressure measurement after stenting predicts adverse events at follow-up: a multicenter registry. Circulation. 2002;105:2950–4.

    Article  PubMed  Google Scholar 

  25. Taqueti VR, Hachamovitch R, Murthy VL, Naya M, Foster CR, Hainer J, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131:19–27.

    Article  PubMed  Google Scholar 

  26. Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35:2541–619.

    Article  PubMed  Google Scholar 

  27. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34:2949–3003.

    Article  PubMed  Google Scholar 

  28. Nahser PJ Jr, Brown RE, Oskarsson H, Winniford MD, Rossen JD. Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation. 1995;91:635–40.

    Article  PubMed  Google Scholar 

  29. Lee JM, Layland J, Jung JH, Lee HJ, Echavarria-Pinto M, Watkins S, et al. Integrated Physiologic Assessment of Ischemic Heart Disease in Real-World Practice Using Index of Microcirculatory Resistance and Fractional Flow Reserve: insights From the International Index of Microcirculatory Resistance Registry. Circ Cardiovasc Interv. 2015;. doi:10.1161/CIRCINTERVENTIONS.115.002857.

    Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A3B01006631).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Hee-Seung Bom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, SG., Park, K.S., Kim, J. et al. Coronary flow reserve and relative flow reserve measured by N-13 ammonia PET for characterization of coronary artery disease. Ann Nucl Med 31, 144–152 (2017). https://doi.org/10.1007/s12149-016-1138-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-016-1138-z

Keywords

Navigation