Skip to main content
Log in

A two‐center study for the quality control of [18F]FDG using FASTlab phosphate cassettes

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

The GE FASTlab radiosynthesis module is routinely used for the production of [18F]FDG, utilizing the commercially available phosphate cassettes. Because of the observation of a white precipitate in the product vial before the product expiry time, we re-examined the quality of the produced [18F]FDG solution.

Methods

Phosphate buffered [18F]FDG solution was synthesized on the FASTlab and analyzed at both National Taiwan University Hospital (NTUH) of Taiwan and Royal Brisbane and Women’s Hospital (RBWH) of Australia. In addition to the standard product quality control (QC), the concentration of aluminum (Al3+) as probable cause of the precipitations in the [18F]FDG solution was analyzed by inductively coupled plasma mass spectrometry (ICP-MS at RBWH) and inductively coupled plasma optical emission spectrometry (ICP-OES at NTUH), and using three semi-quantitative methods at NTUH, Advantec® Alumi Check Test Strip, Quantofix® Aluminum Test Strip and MColortest™ Aluminum Test kit.

Results

The precipitates were observed in the [18F]FDG solution within 24 (NTUH) and 6 (RBWH) hours after the end of synthesis in 38–100 % of the batches, dependent on the batch of the FASTlab cassettes. Addition of metal-free HCl(aq) to aliquots of [18F]FDG containing precipitate, followed by ICP-MS analysis revealed Al3+ concentrations of 70–80 ppm. Al3+ concentrations of 10–12 ppm were detected in [18F]FDG batches that did not show any precipitation. In contrast, less than 5 ppm of the residual Al3+ was detected by semi-quantitative methods in all batches.

Conclusion

The US (USP), British (BP), European (EP) and Japanese (JP) pharmacopeias demand that [18F]FDG for injection should be clear and particulate free within the given shelf-life/expiration time. To avoid Al-phosphate precipitation within the product expiry time, FASTlab citrate cassettes, rather than phosphate cassettes, should be used for [18F]FDG production. Although testing for Al3+ is not listed in the [18F]FDG monographs of the USP, BP and EP, residual Al3+ levels should be considered in the interests of patient safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ido T, Wan CN, Wan CN, Casella V, Fowler J, Wolf A, Wolf A, Reivich M. Labeled 2‐deoxy‐d‐glucose analogs. 18F‐labeled 2‐deoxy‐2‐fluoro‐d‐glucose, 2‐deoxy‐2‐fluoro‐d‐mannose and 14C‐2‐deoxy‐2‐fluoro‐d‐glucose. J Label Cpd Radiopharm. 1978;14(2):175–83.

    Article  CAS  Google Scholar 

  2. Shiue CY, Fowler JS, Wolf AP, Alexoff D, Macgregor RR. Gas-liquid chromatographic determination of relative amounts of 2-deoxy-2-flouro-d-glucose and 2-deoxy-2-fluoro-d-mannose synthesized from various methods. J Label Cpd Radiopharm. 1985;22(5):503–8.

    Article  CAS  Google Scholar 

  3. Shiue CY, Salvadori PA, Wolf AP, Fowler JS, MacGregor RR. A new improved synthesis of 2-deoxy-2-[18F]fluoro-d-glucose from 18F-labeled acetyl hypofluorite. J Nucl Med. 1982;23(10):899–903.

    CAS  PubMed  Google Scholar 

  4. Diksic M, Jolly D. New high-yield synthesis of 18F-labelled 2-deoxy-2-fluoro-d-glucose. Int J Appl Radiat Isot. 1983;34(6):893–6.

    Article  CAS  PubMed  Google Scholar 

  5. Bida GT, Satyamurthy N, Barrio JR. The synthesis of 2-[18F]fluoro-2-deoxy-d-glucose using glycals: a reexamination. J Nucl Med. 1984;25(12):1327–34.

    CAS  PubMed  Google Scholar 

  6. Adam MJ. A rapid, stereoselective, high yielding synthesis of 2-deoxy-2-fluoro-d-hexopyranoses: reaction of glycals with acetyl hypofluorite. J Chem Soc Chem Commun. 1982;13:730–1.

    Article  Google Scholar 

  7. Shiue CY, Wolf AP. A rapid synthesis of 2-deoxy-2-fluoro-d-glucose from xenon difluoride suitable for labelling with 18F. J Label Cpd Radiopharm. 1983;20(2):157–62.

    Article  CAS  Google Scholar 

  8. Sood S, Firnau G, Garnett E. Radiofluorination with xenon difluoride: a new high yield synthesis of [18F]2-fluoro-2-deoxy-d-glucose. Int J Appl Radiat Isot. 1983;34(4):743–5.

    Article  CAS  PubMed  Google Scholar 

  9. Ehrenkaufer R, Potocki J, Jewett D. Simple synthesis of F-18-labeled 2-fluoro-2-deoxy-d-glucose: concise communication. J Nucl Med. 1984;25(3):333–7.

    CAS  PubMed  Google Scholar 

  10. Tewson TJ. Synthesis of no-carrier-added fluorine-18 2-fluoro-2-deoxy-d-glucose. J Nucl Med. 1983;24(8):718–21.

    CAS  PubMed  Google Scholar 

  11. Levy S, Elmaleh D, Livni E. A new method using anhydrous [18F]fluoride to radiolabel 2-[18F]fluoro-2-deoxy-d-glucose. J Nucl Med. 1982;23(10):918–22.

    CAS  PubMed  Google Scholar 

  12. Hamacher K, Coenen H, Stöcklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986;27(2):235–8.

    CAS  PubMed  Google Scholar 

  13. Fowler JS, Ido T. Initial and subsequent approach for the synthesis of 18F-FDG. Semin Nucl Med. 2002;32(1):6–12.

    Article  PubMed  Google Scholar 

  14. Yu S. Review of 18F-FDG synthesis and quality control. Biomed Imaging Interv J. 2006;2(4):e57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saha GB. Fundamentals of nuclear pharmacy. 5th ed. New York: Springer-Verlag; 2004.

    Google Scholar 

  16. Krasikova R. PET radiochemistry automation: state of the art and future trends in 18F-nucleophilic fluorination. Curr Org Chem. 2013;17(19):2097–107.

    Article  CAS  Google Scholar 

  17. GE Healthcare. FASTlab synthesizer FDG-phosphate application manual. Waukesha, WI: GE Healthcare; 2012.

    Google Scholar 

  18. GE Healthcare. FASTlab synthesizer FDG-citrate application manual. Waukesha, WI: GE Healthcare; 2012.

    Google Scholar 

  19. USP36/NF31. Fludeoxyglucose F18 injection. In: The United States Pharmacopeia, 37th edn, and The National Formulary, 32nd edn. Rockville: United States Pharmacopeia Convention, Inc.; 2014, p. 3026.

  20. British Pharmacopoeia. Monographs: radiopharmaceutical preparation, fludeoxyglucose [18F]injection. London: British Pharmacopoeia Commission; 2015.

  21. Radionuclides SoMAoC-P. Standards of compounds labeled with positron nuclides approved as established techniques for medical use (2001 revision). Japan Radioisotope Association. 2001.

  22. GE Healthcare. TRACERlab MXFDG operator manual. Waukesha, WI: GE Healthcare; 2003.

    Google Scholar 

  23. GE Healthcare. TRACERlab MXFDG consumable manual. Waukesha, WI: GE Healthcare; 2003.

    Google Scholar 

  24. Fawdry RM. Radiolysis of 2-[18F] fluoro-2-deoxy-d-glucose(FDG) and the role of reductant stabilisers. Appl Radiat Isot. 2007;65(11):1193–201.

    Article  CAS  PubMed  Google Scholar 

  25. Ogawa T, Miyajima M, Wakiyama N, Terada K. Effects of phosphate buffer in parenteral drugs on particle formation from glass vials. Chem Pharm Bull (Tokyo). 2013;61(5):539–45.

    Article  CAS  PubMed  Google Scholar 

  26. FNCA. Guidline for quality assurance and quality control of 18F-FDG (2-deoxy-2-fluoro-d-glucose). Japan: FNCA Association; 2011.

  27. Nakao R, Kida T, Suzuki K. Factors affecting quality control of [18F] FDG injection: bacterial endotoxins test, aluminum ions test and HPLC analysis for FDG and CIDG. Appl Radiat Isot. 2005;62(6):889–95.

    Article  CAS  PubMed  Google Scholar 

  28. Nandy S, Rajan M. Fully automated and simplified radiosynthesis of [18F]-3′-deoxy-3′-fluorothymidine using anhydro precursor and single neutral alumina column purification. J Radioanal Nucl Chem. 2010;283(3):741–8.

    Article  CAS  Google Scholar 

  29. Nandy S, Rajan M, Korde A, Krishnamurthy N. The possibility of a fully automated procedure for radiosynthesis of fluorine-18-labeled fluoromisonidazole using a simplified single, neutral alumina column purification procedure. Appl Radiat Isot. 2010;68(10):1937–43.

    Article  CAS  PubMed  Google Scholar 

  30. Lide DR. CRC handbook of chemistry and physics. 85th ed. Boca Raton: CRC Press; 2004.

    Google Scholar 

  31. Walters LR, Martin KJ, Jacobson MS, Hung JC, Mosman EA. Stability evaluation of 18F-FDG at high radioactive concentrations. J Nucl Med Technol. 2012;40(1):52–6.

    Article  PubMed  Google Scholar 

  32. Long JZ, Jacobson MS, Hung JC. Comparison of FASTlab 18F-FDG production using phosphate and citrate buffer cassettes. J Nucl Med Technol. 2013;41(1):32–4.

    Article  PubMed  Google Scholar 

  33. Gard DR. Phosphoric acids and phosphates. In: Kirk-Othmer Encyclopedia of Chemical Technology. Hoboken, NJ: Wiley; 2000.

  34. Schrödter K, Bettermann G, Staffel T, Wahl F, Klein T, Hofmann T, editors. Phosphoric acid and phosphates. Wiley-VCH Verlag GmbH & Co. KGaA; 2000.

  35. Daydé S, Filella M, Berthon G. Aluminum speciation studies in biological fluids. Part 3. Quantitative investigation of aluminum-phosphate complexes and assessment of their potential significance in vivo. J Inorg Biochem. 1990;38(3):241–59.

    Article  PubMed  Google Scholar 

  36. Berthon G, Daydé S. Why aluminum phosphate is less toxic than aluminum hydroxide. J Am Coll Nutr. 1992;11(3):340–8.

    Article  CAS  PubMed  Google Scholar 

  37. Ogawa T, Miyajima M, Wakiyama N, Terada K. Aluminum elution and precipitation in glass vials: effect of pH and buffer species. Drug Dev Ind Pharm. 2013;41(2):315–21.

    Article  PubMed  Google Scholar 

  38. Motekaitis RJ, Martell AE. Complexes of aluminum (III) with hydroxy carboxylic acids. Inorg Chem. 1984;23(1):18–23.

    Article  CAS  Google Scholar 

  39. Jacobson MS, Dankwart HR, Mahoney DW. Radiolysis of 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) and the role of ethanol and radioactive concentration. Appl Radiat Isot. 2009;67(6):990–5.

    Article  CAS  PubMed  Google Scholar 

  40. Dantas NM, Nascimento JE, Santos-Magalhães NS, Oliveira ML. Radiolysis of 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) and the role of ethanol, radioactive concentration and temperature of storage. Appl Radiat Isot. 2013;72:158–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Yao Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YY., Taylor, S., Koziorowski, J. et al. A two‐center study for the quality control of [18F]FDG using FASTlab phosphate cassettes. Ann Nucl Med 30, 563–571 (2016). https://doi.org/10.1007/s12149-016-1097-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-016-1097-4

Keywords

Navigation