Skip to main content
Log in

Comparison of estimated human dose of 68Ga-MAA with 99mTc-MAA based on rat data

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

99mTc macroaggregated albumin (99mTc-MAA) that had been used as a perfusion agent has been evaluated. In this study, we tried to estimate human absorbed dose of 68Ga-MAA via commercially available kit from Pars-Isotopes, based on biodistribution data in wild-type rats, and compare our estimation with the available absorbed dose data from 99mTc-MAA.

Methods

For biodistribution of 68Ga-MAA, three rats were sacrificed at each selected times after injection (15, 30, 45, 60, and 120 min) and the percentage of injected dose per gram of each organ was measured by direct counting from rats data from 11 harvested organs. The medical internal radiation dose formulation was applied to extrapolate from rats to human and to project the absorbed radiation dose for various organs in humans.

Results

The biodistribution data for 68Ga-MAA showed that the most of the activity was taken up by the lung (more than 97 %) in no time. Our dose prediction shows that a 185-MBq injection of 68Ga-MAA into humans might result in an estimated absorbed dose of 4.31 mGy in the whole body. The highest absorbed doses are observed in the adrenals, spleen, pancreas, and red marrow with 0.36, 0.34, 0.26, and 0.19 mGy, respectively.

Conclusion

Since the 99mTc-MAA remains longer than 68Ga-MAA in the lung and 68Ga-MAA has good image qualities and results in lower amounts of dose delivery to the critical organs such as gonads, red marrow, and adrenals, the use of 68Ga-MAA is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Velikyan I. Prospective of 68Ga-radiopharmaceutical development. Theranostics. 2014;4:47–80.

    Article  PubMed Central  CAS  Google Scholar 

  2. Jalilian AR, Shanesazzadeh S, Rowshanfarzad P, Bolourinovin F, Majdabadi A. Biodistribution study of [61 Cu] pyruvaldehyde-bis (N-4-methylthiosemicarbazone) in normal rats as a PET tracer. Nucl Sci Tech. 2008;19:159–64.

    Article  CAS  Google Scholar 

  3. Firestone RB, Shirley VS. Table of Isotopes, 2 Volume Set. In: Firestone RB, Shirley VS, editors. p. 3168. ISBN 0-471-33056-6 Wiley; 1998. p. 1.

  4. Roesch F, Riss J. P. The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr Top Med Chem. 2010;10:1633–68.

    Article  CAS  PubMed  Google Scholar 

  5. Yang DJ, Kim EE, Inoue T. Targeted molecular imaging in oncology. Ann Nucl Med. 2006;20(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  6. Shanehsazzadeh S, Yousefnia H, Jalilian A, Zolghadri S, Lahooti A. Estimated human absorbed dose for 68Ga-ECC based on mice data: comparison with 67Ga-ECC. Ann Nucl Med. 2015. doi:10.1007/s12149-015-0967-5.

    Google Scholar 

  7. De Queirós A, Brandão S, Macedo L, Ourem M, Mota V, Leite L, et al. Evaluation of normality and reproducibility parameters of scintigraphy with 99mTc-MAA in the diagnosis of intrapulmonary vascular dilatations. Ann Nucl Med. 2015;29:46–51.

    Article  PubMed  Google Scholar 

  8. Mahdavi R, Caronia J, Fayyaz J, Panagopoulos G, Lessnau K, Scharf S, et al. Agreement between SPECT V/Q scan and CT angiography in patients with high clinical suspicion of PE. Ann Nucl Med. 2013;27:834–8.

    Article  PubMed  Google Scholar 

  9. Even GA, Green MA. Gallium-68-labeled macroaggregated human serum albumin, 68Ga-MAA. Int J Rad Appl Instrum B. 1989;16:319–21.

    Article  CAS  PubMed  Google Scholar 

  10. Shanehsazzadeh S, Lahooti A, Shirmardi SP, Erfani M. Comparison of estimated human effective dose of 67Ga-and 99mTc-labeled bombesin based on distribution data in mice. J Radioanal Nucl Chem. 2015. doi:10.1007/s10967-015-3995-7.

    Google Scholar 

  11. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.

    PubMed  Google Scholar 

  12. Snyder W, Ford M, Warner G, Watson S. S” absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet No. 11. Society of Nuclear Medicine, New York. 1975.

  13. Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med. 1999;40:37S–61S.

    CAS  PubMed  Google Scholar 

  14. Shanehsazzadeh S, Yousefnia H, Lahooti A, Zolghadri S, Jalilian AR, Afarideh H. Assessment of human effective absorbed dose of 67Ga–ECC based on biodistribution rat data. Ann Nucl Med. 2014;29:118–24.

    Article  PubMed  Google Scholar 

  15. Sadeghzadeh M, Shanehsazzadeh S, Lahooti A. Assessment of the effective absorbed dose of 4-benzyl-1-(3-[125I]-iodobenzylsulfonyl) piperidine in humans on the basis of biodistribution data of rats. Nucl Med Commun. 2015;36:90–4.

    Article  CAS  PubMed  Google Scholar 

  16. Sparks RB, Aydogan B. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. In: Sixth international radiopharmaceutical dosimetry symposium oak ridge. Oak Ridge Associated Universities; 1996. p. 705–16.

  17. Maus S, Buchholz H-G, Ament S, Brochhausen C, Bausbacher N, Schreckenberger M. Labelling of commercially available human serum albumin kits with 68Ga as surrogates for 99mTc-MAA microspheres. Appl Radiat Isotop. 2011;69:171–5.

    Article  CAS  Google Scholar 

  18. Council B. Guidelines on the use of living animals in scientific investigations. Biological council. 1987.

  19. Amor-Coarasa A, Milera A, Carvajal DA, McGoron AJ, editors. 99mTc-MAA vs. 68Ga-MAA as Perfusion Agents. Biomedical Engineering Conference (SBEC), 2013 29th Southern; 2013: IEEE.

  20. Lahooti A, Shanehsazzadeh S, Jalilian AR, Tavakoli MB. Assessment of effective absorbed dose of 111In-DTPA-Buserelin in human on the basis of biodistribution rat data. Radiat Prot Dosim. 2013;154:1–8.

    Article  CAS  Google Scholar 

  21. Shanehsazzadeh S, Lahooti A. Biodistribution of 80 nm iron oxide nanoparticles labeled with 99mTc in Balb/c mice. Nucl Med Biol. 2014;41:625.

    Article  Google Scholar 

  22. Shanehsazzadeh S, Oghabian MA, Lahooti A, Abdollahi M, Haeri SA, Amanlou M, et al. Estimated background doses of [67Ga]-DTPA-USPIO in normal Balb/c mice as a potential therapeutic agent for liver and spleen cancers. Nucl Med Commun. 2013;34:915–25.

    PubMed  Google Scholar 

  23. Jalilian A, Shanehsazzadeh S, Akhlaghi M, Garoosi J, Rajabifar S, Tavakoli M. Preparation and evaluation of [67Ga]-DTPA-β-1−24-corticotrophin in normal rats. Radiochim Acta. 2008;96:435–9.

    CAS  Google Scholar 

  24. Jalilian A, Shanehsazzadeh S, Akhlaghi M, Kamali-Dehghan M, Moradkhani S. Development of [111In]-DTPA-buserelin for GnRH receptor studies. Radiochim Acta. 2010;98:113–9.

    CAS  Google Scholar 

  25. Moghaddam AK, Jalilian AR, Hayati V, Shanehsazzadeh S. Determination of human absorbed dose of 201Tl (III)-DTPA-HIgG based on biodistribution data in rats. Radiat Prot Dosim. 2010;141:269–74.

    Article  Google Scholar 

  26. Lahooti A, Shanehsazzadeh S, Oghabian MA, Allen BJ. Assessment of human effective absorbed dose of Tc-99m-USPIO based on biodistribution rat data. J Labelled Compd Radiopharm. 2013;56:S258.

  27. Shanehsazzadeh S, Oghabian MA, Lahooti A, Allen BJ. Development of ultra small super paramagnetic iron oxide nanoparticles labeled with Gallium 67 as a dual modality probe. J Labelled Compd Radiopharm. 2013;56:S236.

  28. Moghaddam AK, Jalilian AR, Hayati V, Shanehsazzadeh S, Dodangeh A. Evaluation And Calculation of Human absorbed dose of (201) Tl(III)-DTPA-HIgG based on biodistribution data in rats. J Labelled Compd Radiopharm. 2011;54:S347.

  29. Jalilian A, Shanehsazzadeh S, Akhlaghi M, Garousi J, Rajabifar S, Tavakoli M. Preparation and biodistribution of [67 Ga]-DTPA-gonadorelin in normal rats. J Radioanal Nucl Chem. 2008;278:123–9.

    Article  CAS  Google Scholar 

  30. Shanehsazzadeh S, Jalilian AR, Sadeghi HR, Allahverdi M. Determination of human absorbed dose of 67Ga-DTPA-ACTH based on distribution data in rats. Radiat Prot Dosim. 2009;134:79–86.

    Article  CAS  Google Scholar 

  31. Shanehsazzadeh S, Lahooti A, Sadeghi HR, Jalilian AR. Estimation of human effective absorbed dose of 67Ga–cDTPA–gonadorelin based on biodistribution rat data. Nucl Med Commun. 2011;32:37–43.

    Article  CAS  PubMed  Google Scholar 

  32. Bevelacqua J. Internal dosimetry primer. Radiat Prot. Manage. 2005;22:7–17.

    Google Scholar 

  33. Icrp. Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP Publication 53. ICRP Publication 106. Approved by the Commission in October 2007. Ann ICRP. 2008;38:1–197.

  34. Oghabian MA, Gharehaghaji N, Masoudi A, Shanehsazzadeh S, Ahmadi R, Majidi RF, et al. Effect of coating materials on lymph nodes detection using magnetite nanoparticles. Adv Sci Eng Med. 2013;5:37–45.

    Article  CAS  Google Scholar 

  35. Omid H, Oghabian MA, Ahmadi R, Shahbazi N, Hosseini HRM, Shanehsazzadeh S, et al. Synthesizing and staining manganese oxide nanoparticles for cytotoxicity and cellular uptake investigation. BBA Gen Subj. 2014;1840:428–33.

    Article  CAS  Google Scholar 

  36. Mirzaei A, Jalilian A, Aghanejad A, Mazidi M, Yousefnia H, Shabani G, et al. Preparation and evaluation of 68Ga-ECC as a PET renal imaging agent. Nucl Med Mol Imag. 2015. doi:10.1007/s13139-015-0323-7.

    Google Scholar 

  37. Shanehsazzadeh S, Oghabian MA, Daha FJ, Amanlou M, Allen BJ. Biodistribution of ultra small superparamagnetic iron oxide nanoparticles in BALB mice. J Radioanal Nucl Chem. 2013;295:1517–23.

    Article  CAS  Google Scholar 

  38. Shanehsazzadeh S, Gruettner C, Lahooti A, Mahmoudi M, Allen BJ, Ghavami M, et al. Monoclonal antibody conjugated magnetic nanoparticles could target MUC-1-positive cells in vitro but not in vivo. Contrast Media Mol Imaging. 2015;10:225–36.

    Article  CAS  PubMed  Google Scholar 

  39. Wild D, Wicki A, Mansi R, Béhé M, Keil B, Bernhardt P, et al. Exendin-4–Based Radiopharmaceuticals for Glucagonlike Peptide-1 Receptor PET/CT and SPECT/CT. J Nucl Med. 2010;51:1059–67.

    Article  CAS  PubMed  Google Scholar 

  40. Etchebehere ECSdC, de Oliveira Santos A, Gumz B, Vicente A, Hoff PG, Corradi G, et al. 68Ga-DOTATATE PET/CT, 99mTc-HYNIC-Octreotide SPECT/CT, and whole-body MR imaging in detection of neuroendocrine tumors: a prospective trial. J Nucl Med. 2014;55:1598–604.

  41. Wu SY, Kuo JW, Chang TK, Liu RS, Lee RC, Wang SJ, et al. Preclinical characterization of 18F-MAA, a novel PET surrogate of 99mTc-MAA. Nucl Med Biol. 2012;39:1026–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nuclear Science and Technology Research Institute (NSTRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Shanehsazzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanehsazzadeh, S., Lahooti, A., Yousefnia, H. et al. Comparison of estimated human dose of 68Ga-MAA with 99mTc-MAA based on rat data. Ann Nucl Med 29, 745–753 (2015). https://doi.org/10.1007/s12149-015-0997-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-015-0997-z

Keywords

Navigation