Skip to main content

Advertisement

Log in

Assessment of human effective absorbed dose of 67 Ga–ECC based on biodistribution rat data

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

In a diagnostic context, determination of absorbed dose is required before the introduction of a new radiopharmaceutical to the market to obtain marketing authorization from the relevant agencies. In this work, the absorbed dose of [67 Ga]-ethylenecysteamine cysteine [(67 Ga)ECC] to human organs was determined by using distribution data for rats.

Methods

For biodistribution data, the animals were sacrificed by CO2 asphyxiation at selected times after injection (0.5, 2 and 48 h, n = 3 for each time interval), then the tissue (blood, heart, lung, brain, intestine, feces, skin, stomach, kidneys, liver, muscle and bone) were removed. The absorbed dose was determined by Medical Internal Radiation Dose (MIRD) method after calculating cumulated activities in each organ.

Results

Our prediction shows that a 185-MBq injection of 67Ga-ECC into the humans might result in an estimated absorbed dose of 0.029 mGy in the whole body. The highest absorbed doses are observed in the spleen and liver with 33.766 and 16.847 mGy, respectively.

Conclusion

The results show that this radiopharmaceutical can be a good SPECT tracer since it can be produced easily and also the absorbed dose in each organ is less than permitted absorbed dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stabin MG, Tagesson M, Thomas SR, Ljungberg M, Strand SE. Radiation dosimetry in nuclear medicine. Appl Radiat Isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine. 1999;50:73–87.

    Article  CAS  Google Scholar 

  2. Eberlein U, Broer JH, Vandevoorde C, Santos P, Bardies M, Bacher K, et al. Biokinetics and dosimetry of commonly used radiopharmaceuticals in diagnostic nuclear medicine—a review. Eur J Nucl Med Mol. 2011;I(38):2269–81.

    Article  Google Scholar 

  3. Stabin MG. MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med: official publication, Society of Nuclear Medicine. 1996;37:538–46.

    CAS  Google Scholar 

  4. Loevinger R, Budinger TF, Watson EE. MIRD primer for absorbed dose calculations. New York: Society of Nuclear Medicine; 1988.

    Google Scholar 

  5. Sparks RB, Aydogan B. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. In Sixth International Radiopharmaceutical Dosimetry Symposium Oak Ridge, Oak Ridge Associated Universities, 1996; 705–16.

  6. Lahooti A, Shanehsazzadeh S, Oghabian MA, Allen BJ. Assessment of human effective absorbed dose of Tc-99 m-USPIO based on biodistribution rat data. J Labelled Compd Rad. USA: Wiley; 2013. p. S258.

    Google Scholar 

  7. Stabin MG. The importance of patient-specific dose calculations in nuclear medicine. Nucl Eng Technol. 2008;40:527.

    Article  Google Scholar 

  8. Lederer CM, Shirley VS, Browne E, Shihab-Eldin AA. Table of isotopes. New York: Wiley; 1978. p. 67.

    Google Scholar 

  9. Mariani G, Bodei L, Adelstein SJ, Kassis AI. Emerging roles for radiometabolic therapy of tumors based on Auger electron emission. J Nucl Med. 2000;41:1519–21.

    CAS  PubMed  Google Scholar 

  10. Mez-Tejedor GGG, Fuss MC. Radiation Damage in Biomolecular Systems. USA: Springer; 2012.

    Book  Google Scholar 

  11. Firestone RB, Shirley VS, Baglin CM, Chu SF, Zipkin J. Table of Isotopes, vol. II. New York: Willey; 1996.

    Google Scholar 

  12. Cutler CS, Giron MC, Reichert DE, Snyder AZ, Herrero P, Anderson CJ, et al. Evaluation of gallium-68 tris(2-mercaptobenzyl)amine: a complex with brain and myocardial uptake. Nucl Med Biol. 1999;26:305–16.

    Article  CAS  PubMed  Google Scholar 

  13. Tsang BW, Mathias CJ, Green MA. A gallium-68 radiopharmaceutical that is retained in myocardium: 68 Ga [(4, 6-MeO2sal) 2BAPEN]. J Nucl Med: official publication, Society of Nuclear Medicine. 1993;34:1127.

    CAS  Google Scholar 

  14. Jalilian A, Shanehsazzadeh S, Akhlaghi M, Garoosi J, Rajabifar S, Tavakoli M. Preparation and evaluation of [67 Ga]-DTPA-β-1-24-corticotrophin in normal rats. Radiochim Acta. 2008;96:435–9.

    CAS  Google Scholar 

  15. Shanehsazzadeh S, Jalilian AR, Sadeghi HR, Allahverdi M. Determination of human absorbed dose of 67GA-DTPA-ACTH based on distribution data in rats. Radiat Prot Dosim. 2009;134:79–86.

    Article  CAS  Google Scholar 

  16. Jalilian A, Shanehsazzadeh S, Akhlaghi M, Garousi J, Rajabifar S, Tavakoli M. Preparation and biodistribution of [67 Ga]-DTPA-gonadorelin in normal rats. J Radioanal Nucl Ch. 2008;278:123–9.

    Article  CAS  Google Scholar 

  17. Shanehsazzadeh S, Jalilian A. Development of [67ga]-Dtpa-Gonadorelin in Normal Rats. J Labelled Compd Rad. 2009;52(Suppl 1):S326.

    Google Scholar 

  18. Shanehsazzadeh S, Lahooti A, Sadeghi HR, Jalilian AR. Estimation of human effective absorbed dose of 67 Ga–cDTPA–gonadorelin based on biodistribution rat data. Nucl Med Commun. 2011;32:37–43.

    Article  CAS  PubMed  Google Scholar 

  19. Shanehsazzadeh S, Oghabian MA, Lahooti A, Abdollahi M, Haeri SA, Amanlou M, et al. Estimated background doses of [67 Ga]-DTPA-USPIO in normal Balb/c mice as a potential therapeutic agent for liver and spleen cancers. Nucl Med Commun. 2013;34:915–25.

    PubMed  Google Scholar 

  20. Jalilian A, Yousefnia H, Zolghadri S, Khoshdel M, Bolourinovin F, Rahiminejad A. Development of radiogallium–ethylenecysteamine cysteine complex as a possible renal imaging agent. J Radioanal Nucl Ch. 2010;284:49–54.

    Article  CAS  Google Scholar 

  21. Shanehsazzadeh S, Oghabian MA, Lahooti A, Allen BJ. Development of ultra small super paramagnetic iron oxide nanoparticles labeled with Gallium 67 as a dual modality probe. J Labelled Compd Rad. USA: Wiley; 2013. p. S236.

    Google Scholar 

  22. Council B. Guidelines on the use of living animals in scientific investigations. Biological Council 1987.

  23. Jalilian A, Shanehsazzadeh S, Akhlaghi M, Kamali-dehghan M, Moradkhani S. Development of [111In]-DTPA-buserelin for GnRH receptor studies. Radiochim Acta. 2010;98:113–9.

    CAS  Google Scholar 

  24. Shanehsazzadeh S, Oghabian MA, Daha FJ, Amanlou M, Allen BJ. Biodistribution of ultra small superparamagnetic iron oxide nanoparticles in BALB mice. J Radioanal Nucl Ch. 2013;295:1517–23.

    Article  CAS  Google Scholar 

  25. Sadeghzadeh M, Shanehsazzadeh S, Lahooti A. Assessment of the effective absorbed dose of 4-benzyl-1-(3-[125I]-iodobenzylsulfonyl) piperidine in humans on the basis of biodistribution data of rats. Nucl Med Commun. 2014;. doi:10.1097/MNM.0000000000000210.

    Google Scholar 

  26. Jalilian AR, Shanesazzadeh S, Rowshanfarzad P, Bolourinovin F, Majdabadi A. Biodistribution study of [< sup > 61 </sup > Cu] pyruvaldehyde-bis (N-4-methylthiosemicarbazone) in normal rats as a PET tracer. Nucl Sci Tech. 2008;19:159–64.

    Article  CAS  Google Scholar 

  27. Lahooti A, Shanehsazzadeh S, Jalilian AR, Tavakoli MB. Assessment of effective absorbed dose of 111In-DTPA-Buserelin in human on the basis of biodistribution rat data. Radiat Prot Dosim. 2013;154:1–8.

    Article  CAS  Google Scholar 

  28. Moghaddam AK, Jalilian AR, Hayati V, Shanehsazzadeh S, Dodangeh A. Evaluation And Calculation of Human absorbed dose of (201) Tl(III)-DTPA-HIgG based on biodistribution data in rats. J Labelled Compd Rad. USA: Wiley; 2011. p. S347.

    Google Scholar 

  29. Moghaddam AK, Jalilian AR, Hayati V, Shanehsazzadeh S. Determination of human absorbed dose of 201Tl (III)-DTPA-HIgG based on biodistribution data in rats. Radiat Prot Dosim. 2010;141:269–74.

    Article  Google Scholar 

  30. Bevelacqua J. Internal dosimetry primer. Radiat Prot Manage. 2005;22:7.

    Google Scholar 

  31. Icrp Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP Publication 53. ICRP Publication 106. Approved by the Commission in October 2007. Ann ICRP. 2008; 38:1–197.

  32. Snyder W, Ford M, Warner G, Watson S. S″ absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet No. 11. New York: Society of Nuclear Medicine; 1975.

    Google Scholar 

  33. Vallabhajosula S, Kuji I, Hamacher KA, Konishi S, Kostakoglu L, Kothari PA, et al. Pharmacokinetics and Biodistribution of 111In- and 177Lu-Labeled J591 Antibody Specific for Prostate-Specific Membrane Antigen: Prediction of 90Y-J591 Radiation Dosimetry Based on 111In or 177Lu? J Nucl Med. 2005;46:634–41.

    CAS  PubMed  Google Scholar 

  34. Food and Drug Administration. Title 21 CFR 361.1, Radioactive Drugs for Certain Research Uses. In 4-1-01 ed; National Archives and Records Administration, Washington, 2001; p 300–305.

Download references

Acknowledgments

This work was supported by the Nuclear Science and Technology Research Institute (NSTRI) and Tehran University of Medical Sciences. The authors would like to express their deep gratitude to all technicians who support this research.

Conflict of interest

The authors declare that they have no conflict.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afsaneh Lahooti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanehsazzadeh, S., Yousefnia, H., Lahooti, A. et al. Assessment of human effective absorbed dose of 67 Ga–ECC based on biodistribution rat data. Ann Nucl Med 29, 118–124 (2015). https://doi.org/10.1007/s12149-014-0917-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-014-0917-7

Keywords

Navigation