Skip to main content

Advertisement

Log in

Assessing margin expansions of internal target volumes in 3D and 4D PET: a phantom study

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Background and Purpose

To quantify tumor volume coverage and excess normal tissue coverage using margin expansions of mobile target internal target volumes (ITVs) in the lung.

Materials and methods

FDG-PET list-mode data were acquired for four spheres ranging from 1 to 4 cm as they underwent 1D motion based on four patient breathing trajectories. Both ungated PET images and PET maximum intensity projections (PET-MIPs) were examined. Amplitude-based gating was performed on sequential list-mode files of varying signal-to-background ratios to generate PET-MIPs. ITVs were first post-processed using either a Gaussian filter or a custom two-step module, and then segmented by applying a gradient-based watershed algorithm. Uniform and non-uniform 1 mm margins were added to segmented ITVs until complete target coverage was achieved.

Results

PET-MIPs required smaller uniform margins (4.7 vs. 11.3 mm) than ungated PET, with correspondingly smaller over-coverage volumes (OCVs). Non-uniform margins consistently resulted in smaller OCVs when compared to uniform margins. PET-MIPs and ungated PET had comparable OCVs with non-uniform margins, but PET-MIPs required smaller longitudinal margins (4.7 vs. 8.5 mm). Non-uniform margins were independent of sphere size.

Conclusions

Gated PET-MIP images and non-uniform margins result in more accurate ITV delineation while reducing normal tissue coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chang JY, Dong L, Liu H, Starkschall G, Balter P, Mohan R, et al. Image-guided radiation therapy for non-small cell lung cancer. J Thorac Oncol. 2008;3(2):177–86.

    Article  PubMed  Google Scholar 

  2. Lievens Y, Nulens A, Gaber MA, Defraene G, De Wever W, Stroobants S, et al. Intensity-modulated radiotherapy for locally advanced non-small-cell lung cancer: a dose-escalation planning study. Int J Radiat Oncol Biol Phys. 2011;80(1):306–13.

    Article  PubMed  Google Scholar 

  3. Liao ZX, Komaki RR, Thames HD Jr, Liu HH, Tucker SL, Mohan R, et al. Influence of technologic advances on outcomes in patients with unresectable, locally advanced non-small-cell lung cancer receiving concomitant chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2010;76(3):775–81.

    Article  PubMed  Google Scholar 

  4. Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33(10):3874–900.

    Article  PubMed  Google Scholar 

  5. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.

    Article  PubMed  Google Scholar 

  6. Bradley JD, Moughan J, Graham MV, Byhardt R, Govindan R, Fowler J, et al. A phase I/II radiation dose escalation study with concurrent chemotherapy for patients with inoperable stages I to III non-small-cell lung cancer: phase I results of RTOG 0117. Int J Radiat Oncol Biol Phys. 2010;77(2):367–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Fakiris AJ, McGarry RC, Yiannoutsos CT, Papiez L, Williams M, Henderson MA, et al. Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiat Oncol Biol Phys. 2009;75(3):677–82.

    Article  PubMed  Google Scholar 

  8. Park SJ, Ionascu D, Killoran J, Mamede M, Gerbaudo VH, Chin L, et al. Evaluation of the combined effects of target size, respiratory motion and background activity on 3D and 4D PET/CT images. Phys Med Biol. 2008;53(13):3661–79.

    Article  PubMed  Google Scholar 

  9. Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;59(1):78–86.

    Article  PubMed  Google Scholar 

  10. Bettinardi V, Picchio M, Di Muzio N, Gianolli L, Gilardi MC, Messa C. Detection and compensation of organ/lesion motion using 4D-PET/CT respiratory gated acquisition techniques. Radiother Oncol. 2010;96(3):311–6.

    Article  PubMed  Google Scholar 

  11. Aristophanous M, Berbeco RI, Killoran JH, Yap JT, Sher DJ, Allen AM, et al. Clinical utility of 4D FDG-PET/CT scans in radiation treatment planning. Int J Radiat Oncol Biol Phys. 2012;82(1):e99–105.

    Article  PubMed  Google Scholar 

  12. Hatt M, Maitre AL, Wallach D, Fayad H, Visvikis D. Comparison of different methods of incorporating respiratory motion for lung cancer tumor volume delineation on PET images: a simulation study. Phys Med Biol. 2012;57(22):7409–30.

    Article  PubMed  Google Scholar 

  13. Ezhil M, Vedam S, Balter P, Choi B, Mirkovic D, Starkschall G, et al. Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography. Radiat Oncol. 2009;4:4.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Bradley JD, Nofal AN, El Naqa IM, Lu W, Liu J, Hubenschmidt J, et al. Comparison of helical, maximum intensity projection (MIP), and averaged intensity (AI) 4D CT imaging for stereotactic body radiation therapy (SBRT) planning in lung cancer. Radiother Oncol. 2006;81(3):264–8.

    Article  PubMed  Google Scholar 

  15. Underberg RW, Lagerwaard FJ, Slotman BJ, Cuijpers JP, Senan S. Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer. Int J Radiat Oncol Biol Phys. 2005;63(1):253–60.

    Article  PubMed  Google Scholar 

  16. Lamb JM, Robinson C, Bradley J, Laforest R, Dehdashti F, White BM, et al. Generating lung tumor internal target volumes from 4D-PET maximum intensity projections. Med Phys. 2011;38(10):5732–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Callahan J, Kron T, Schneider-Kolsky M, Dunn L, Thompson M, Siva S, et al. Validation of a 4D-PET maximum intensity projection for delineation of an internal target volume. Int J Radiat Oncol Biol Phys. 2003;86(4):749–54.

    Article  Google Scholar 

  18. Stroom JC, Heijmen BJ. Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiother Oncol. 2002;64(1):75–83.

    Article  PubMed  Google Scholar 

  19. Geets X, Lee JA, Bol A, Lonneux M, Gregoire V. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging. 2007;34(9):1427–38.

    Article  PubMed  Google Scholar 

  20. Janssen MH, Aerts HJ, Ollers MC, Bosmans G, Lee JA, Buijsen J, et al. Tumor delineation based on time-activity curve differences assessed with dynamic fluorodeoxyglucose positron emission tomography-computed tomography in rectal cancer patients. Int J Radiat Oncol Biol Phys. 2009;73(2):456–65.

    Article  PubMed  Google Scholar 

  21. Roels S, Slagmolen P, Nuyts J, Lee JA, Loeckx D, Maes F, et al. Biological image-guided radiotherapy in rectal cancer: challenges and pitfalls. Int J Radiat Oncol Biol Phys. 2009;75(3):782–90.

    Article  PubMed  Google Scholar 

  22. Hofheinz F, Langner J, Beuthien-Baumann B, Oehme L, Steinbach J, Kotzerke J, et al. Suitability of bilateral filtering for edge-preserving noise reduction in PET. EJNMMI Res. 2011;1(1):23.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Fish DA, Brinicombe AM, Pike ER, Walker JG. Blind deconvolution by means of the Richardson-Lucy algorithm. Journal of the Optical Society of America A. 1995;12(1):58–65.

    Article  Google Scholar 

  24. Lucignani G, Paganelli G, Bombardieri E. The use of standardized uptake values for assessing FDG uptake with PET in oncology: a clinical perspective. Nucl Med Commun. 2004;25(7):651–6.

    Article  CAS  PubMed  Google Scholar 

  25. Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med. 2004;45(9):1431–4.

    PubMed  Google Scholar 

  26. Meyer F. Topographic distance and watershed lines. Sig Process. 1994;38(1):113–25.

    Article  Google Scholar 

  27. Cheebsumon P, Yaqub M, van Velden FH, Hoekstra OS, Lammertsma AA, Boellaard R. Impact of [(1)(8)F]FDG PET imaging parameters on automatic tumour delineation: need for improved tumour delineation methodology. Eur J Nucl Med Mol Imaging. 2011;38(12):2136–44.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Riddell C, Brigger P, Carson RE, Bacharach SL. The watershed algorithm: a method to segment noisy PET transmission images. IEEE Trans Nucl Sci. 1999;46(3):713–9.

    Article  Google Scholar 

  29. Yang D, Brame S, El Naqa I, Aditya A, Wu Y, Goddu SM, et al. Technical note: DIRART–A software suite for deformable image registration and adaptive radiotherapy research. Med Phys. 2011;38(1):67–77.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Teo BK, Seo Y, Bacharach SL, Carrasquillo JA, Libutti SK, Shukla H, et al. Partial-volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data. J Nucl Med. 2007;48(5):802–10.

    PubMed  Google Scholar 

  31. Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53(4):822–34.

    Article  PubMed  Google Scholar 

  32. Jani SS, Robinson CG, Dahlbom M, White BM, Thomas DH, Gaudio S, et al. A comparison of amplitude-based and phase-based positron emission tomography gating algorithms for segmentation of internal target volumes of tumors subject to respiratory motion. Int J Radiat Oncol Biol Phys. 2013;87(3):562–9.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Bettinardi V, Rapisarda E, Gilardi MC. Number of partitions (gates) needed to obtain motion-free images in a respiratory gated 4D-PET/CT study as a function of the lesion size and motion displacement. Med Phys. 2009;36(12):5547–58.

    Article  CAS  PubMed  Google Scholar 

  34. Dawood M, Buther F, Stegger L, Jiang X, Schober O, Schafers M, et al. Optimal number of respiratory gates in positron emission tomography: a cardiac patient study. Med Phys. 2009;36(5):1775–84.

    Article  PubMed  Google Scholar 

  35. Davies SC, Hill AL, Holmes RB, Halliwell M, Jackson PC. Ultrasound quantitation of respiratory organ motion in the upper abdomen. Br J Radiol. 1994;67(803):1096–102.

    Article  CAS  PubMed  Google Scholar 

  36. Korin HW, Ehman RL, Riederer SJ, Felmlee JP, Grimm RC. Respiratory kinematics of the upper abdominal organs: a quantitative study. Magn Reson Med. 1992;23(1):172–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Judd Jones, Ph.D., for providing us with user-friendly stand-alone PET reconstruction modules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam S. Jani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jani, S.S., Lamb, J.M., White, B.M. et al. Assessing margin expansions of internal target volumes in 3D and 4D PET: a phantom study. Ann Nucl Med 29, 100–109 (2015). https://doi.org/10.1007/s12149-014-0914-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-014-0914-x

Keywords

Navigation