Skip to main content

Advertisement

Log in

Evaluation of a direct 4D reconstruction method using generalised linear least squares for estimating nonlinear micro-parametric maps

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Estimation of nonlinear micro-parameters is a computationally demanding and fairly challenging process, since it involves the use of rather slow iterative nonlinear fitting algorithms and it often results in very noisy voxel-wise parametric maps. Direct reconstruction algorithms can provide parametric maps with reduced variance, but usually the overall reconstruction is impractically time consuming with common nonlinear fitting algorithms.

Methods

In this work we employed a recently proposed direct parametric image reconstruction algorithm to estimate the parametric maps of all micro-parameters of a two-tissue compartment model, used to describe the kinetics of [\(^{18}\)F]FDG. The algorithm decouples the tomographic and the kinetic modelling problems, allowing the use of previously developed post-reconstruction methods, such as the generalised linear least squares (GLLS) algorithm.

Results

Results on both clinical and simulated data showed that the proposed direct reconstruction method provides considerable quantitative and qualitative improvements for all micro-parameters compared to the conventional post-reconstruction fitting method. Additionally, region-wise comparison of all parametric maps against the well-established filtered back projection followed by post-reconstruction non-linear fitting, as well as the direct Patlak method, showed substantial quantitative agreement in all regions.

Conclusions

The proposed direct parametric reconstruction algorithm is a promising approach towards the estimation of all individual microparameters of any compartment model. In addition, due to the linearised nature of the GLLS algorithm, the fitting step can be very efficiently implemented and, therefore, it does not considerably affect the overall reconstruction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ichise M, Meyer JH, Yonekura Y. An introduction to PET and SPECT neuroreceptor quantification models. J Nucl Med. 2001;42(5):755–63.

    CAS  PubMed  Google Scholar 

  2. Schmidt KC, Turkheimer FE. Kinetic modeling in positron emission tomography. Q J Nucl Med. 2002;46(1):70–85.

    CAS  PubMed  Google Scholar 

  3. Bentourkia M, Zaidi H. Tracer kinetic modeling in PET. PET Clin. 2007;2(2):267–77.

    Article  Google Scholar 

  4. Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cerebr Blood Flow Metab. 2001;21(6):635–52.

    Article  CAS  Google Scholar 

  5. Dai X, Chen Z, Tian J. Performance evaluation of kinetic parameter estimation methods in dynamic FDG-PET studies. Nucl Med Commun. 2011;32(1):4–16.

    Article  PubMed  Google Scholar 

  6. Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math. 1963;11(2):431–41.

    Article  Google Scholar 

  7. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cerebr Blood Flow Metab. 1983;3(1):1–7.

    Article  CAS  Google Scholar 

  8. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-\(^{11}\)C-methyl]-(-)-cocaine PET studies in human subjects. J Cerebr Blood Flow Metab. 1990;10(5):740–7.

    Article  CAS  Google Scholar 

  9. Turkheimer FE, Aston JA, Asselin MC, Hinz R. Multi-resolution Bayesian regression in PET dynamic studies using wavelets. NeuroImage. 2006;32(1):111–21.

    Article  CAS  PubMed  Google Scholar 

  10. Slifstein M, Laruelle M. Effects of statistical noise on graphic analysis of PET neuroreceptor studies. J Nucl Med. 2000;41(12):2083–8.

    CAS  PubMed  Google Scholar 

  11. Kimura Y, Naganawa M, Shidahara M, Ikoma Y, Watabe H. PET kinetic analysis—pitfalls and a solution for the Logan plot. Ann Nucl Med. 2007;21(1):1–8.

    Article  PubMed  Google Scholar 

  12. Tsoumpas C, Turkheimer FE, Thielemans K. A survey of approaches for direct parametric image reconstruction in emission tomography. Med Phys. 2008;35(9):3963–71.

    Article  PubMed  Google Scholar 

  13. Rahmim A, Tang J, Zaidi H. Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction. Med Phys. 2009b;36(8):3654–70.

    Article  PubMed  Google Scholar 

  14. Matthews JC, Bailey D, Price P, Cunningham VJ. The direct calculation of parametric images from dynamic PET data using maximum-likelihood iterative reconstruction. Phys Med Biol. 1997;42(6):1155–73.

    Article  CAS  PubMed  Google Scholar 

  15. Meikle SR, Matthews JC, Cunningham VJ, Bailey DL, Livieratos L, Jones T, et al. Parametric image reconstruction using spectral analysis of PET projection data. Phys Med Biol. 1998;43(3):651–66.

    Article  CAS  PubMed  Google Scholar 

  16. Wang G, Qi J. Acceleration of the direct reconstruction of linear parametric images using nested algorithms. Phys Med Biol. 2010;55(5):1505–17.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wang G, Fu L, Qi J. Maximum a posteriori reconstruction of the Patlak parametric image from sinograms in dynamic PET. Phys Med Biol. 2008;53(3):593–604.

    Article  PubMed  Google Scholar 

  18. Tsoumpas C, Turkheimer FE, Thielemans K. Study of direct and indirect parametric estimation methods of linear models in dynamic positron emission tomography. Med Phys. 2008;35(4):1299–309.

    Article  PubMed  Google Scholar 

  19. Angelis GI, Thielemans K, Tziortzi AC, Turkheimer FE, Tsoumpas C. Convergence optimization of parametric MLEM reconstruction for estimation of Patlak plot parameters. Comput Med Imaging Graphics. 2011;35(5):407–16.

    Article  Google Scholar 

  20. Rahmim A, Zhou Y, Tang J, Wong DF. Direct 4D parametric image reconstruction with plasma input and reference tissue models in reversible binding imaging. In: IEEE Nucl Sci Symp Conf Rec, NSS/MIC 2009; 2009. p. 2516–22.

  21. Kamasak ME, Bouman CA, Morris ED, Sauer K. Direct reconstruction of kinetic parameter images from dynamic PET data. IEEE Trans Med Imag. 2005;24(5):636–50.

    Article  CAS  Google Scholar 

  22. Wang G, Qi J. Generalized algorithms for direct reconstruction of parametric images from dynamic PET data. IEEE Trans Med Imag. 2009;28(11):1717–26.

    Article  Google Scholar 

  23. Matthews JC, Angelis GI, Kotasidis FA, Markiewicz PJ, Reader AJ. Direct reconstruction of parametric images using any spatiotemporal 4D image based model and maximum likelihood expectation maximization. IEEE Nucl Sci Symp Conf Rec NSS/MIC. 2010;M10–6(2010):2435–41.

    Google Scholar 

  24. Feng D, Ho D, Chen K, Wu LC, Wang JK, Liu RS, et al. Evaluation of the algorithms for determining local cerebral metabolic rates of glucose using positron emission tomography dynamic data. IEEE Trans Med Imag. 1995;14(4):697–710.

    Article  CAS  Google Scholar 

  25. Wienhard K, Pawlik G, Herholz K. Estimation of local cerebral glucose utilization by positron emission tomography of [\(^{18}\)F]2-fluoro-2-deoxy-D-glucose: A critical appraisal of optimization procedures. J Cerebr Blood Flow Metab. 1985;5(1):115–25.

    Article  CAS  Google Scholar 

  26. Tsoumpas C, Thielemans K. Direct parametric reconstruction from dynamic projection data in emission tomography including prior estimation of the blood volume component. Nucl Med Commun. 2009;30(7):490–3.

    Article  PubMed  Google Scholar 

  27. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B. 1977;39(1):1–38.

    Google Scholar 

  28. Fessler JA, Hero AO. Space-alternating generalized expectation-maximization algorithm. IEEE Trans Signal Process. 1994;42(10):2664–77.

    Article  Google Scholar 

  29. Lawson CL, Hanson RJ. Solving least squares problems. 3rd ed. Englewood Cliffs: Prentice-Hall; 1974.

    Google Scholar 

  30. Phillips RL, Chen CY, Wong DF, London ED. An improved method to calculate cerebral metabolic rates of glucose using PET. J Nucl Med. 1995;36(9):1668–79.

    CAS  PubMed  Google Scholar 

  31. Hinz R, Turkheimer FE. Determination of tracer arrival delay with spectral analysis. IEEE Trans Nucl Sci. 2006;53(1):212–9.

    Article  Google Scholar 

  32. Takikawa S, Dhawan V, Spetsieris P, Robeson W, Chaly T, Dahl R, et al. Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Radiology. 1993;188(1):131–6.

    Article  CAS  PubMed  Google Scholar 

  33. Sokoloff L, Reivich M, Kennedy C. The [\(^{14}C\)]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28(5):897–916.

    Article  CAS  PubMed  Google Scholar 

  34. Politte DG, Snyder DL. Corrections for accidental coincidences and attenuation in maximum-likelihood image reconstruction for positron-emission tomography. IEEE Trans Med Imag. 1991;10(1):82–9.

    Article  CAS  Google Scholar 

  35. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag. 1994;13(4):601–9.

    Article  CAS  Google Scholar 

  36. Van Velden FHP, Kloet RW, Van Berckel BNM, Wolfensberger SPA, Lammertsma AA, Boellaard R. Comparison of 3D-OP-OSEM and 3D-FBP reconstruction algorithms for high-resolution research tomograph studies: effects of randoms estimation methods. Phys Med Biol. 2008;53(12):3217–30.

    Article  PubMed  Google Scholar 

  37. Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp. 2003;19(4):224–47.

    Article  PubMed  Google Scholar 

  38. Gousias IS, Rueckert D, Heckemann RA, Dyet LE, Boardman JP, Edwards AD, et al. Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest. NeuroImage. 2008;40(2):672–84.

    Article  PubMed  Google Scholar 

  39. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.

    Article  CAS  PubMed  Google Scholar 

  40. Tsoumpas C, Turkheimer F, Thielemans K. Convergence properties of algorithms for direct parametric estimation of linear models in dynamic PET. In: IEEE Nucl Sci Symp Conf Rec; 2007. p. 3034–7.

  41. Angelis GI, Matthews JC, Kotasidis FA, Markiewicz PJ, Lionheart WR, Reader AJ. Evaluation of a direct 4D reconstruction method using GLLS for estimating parametric maps of micro-parameters. In: IEEE Nucl Sci Symp Conf Rec, NSS/MIC; 2012. p. 2355–9.

  42. Barrett HH, Wilson DW, Tsui BM. Noise properties of the EM algorithm: I. Theory Phys Med Biol. 1994;39(5):833–46.

    Article  CAS  Google Scholar 

  43. Tsoumpas C, Polycarpou I, Thielemans K, Buerger C, King AP, Schaeffter T, et al. The effect of regularization in motion compensated PET image reconstruction: a realistic numerical 4D simulation study. Phys Med Biol. 2013;58(6):1759–73.

    Article  CAS  PubMed  Google Scholar 

  44. Phelps ME, Huang SC, Hoffman EJ. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: Validation of method. Ann Neurol. 1979;6(5):371–88.

    Article  CAS  PubMed  Google Scholar 

  45. Hong YT, Fryer TD. Kinetic modelling using basis functions derived from two-tissue compartmental models with a plasma input function: General principle and application to [18F]fluorodeoxyglucose positron emission tomography. NeuroImage. 2010;51(1):164–72.

    Article  PubMed  Google Scholar 

  46. Kotasidis FA, Matthews JC, Angelis GI, Markiewicz PJ, Lionheart WR, Reader AJ. Impact of erroneous kinetic model formulation in direct 4D image reconstruction. In: IEEE Nucl Sci Symp Conf Rec; 2012. p. 2366–7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios I. Angelis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelis, G.I., Matthews, J.C., Kotasidis, F.A. et al. Evaluation of a direct 4D reconstruction method using generalised linear least squares for estimating nonlinear micro-parametric maps. Ann Nucl Med 28, 860–873 (2014). https://doi.org/10.1007/s12149-014-0881-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-014-0881-2

Keywords

Navigation