Skip to main content

Advertisement

Log in

A novel PET scanner with semiconductor detectors may improve diagnostic accuracy in the metastatic survey of head and neck cancer patients

  • Original article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objectives

Our research group developed new PET scanner with semiconductor detectors for high spatial resolution with low scatter noise. On head and neck cancer (HNC) surgery, FDG-PET may often provide false-positive findings in cervical node involvements. Accordingly, we assessed diagnostic accuracy using this new scanner in the HNC patients as compared with the conventional lutetium oxyorthosilicate (LSO) PET.

Methods

We prospectively studied FDG imaging in 35 HNC patients by both semiconductor PET and LSO-PET. At 60 min after 18F-FDG injection, two PET scans were obtained using both scanners consecutively and in random order. Two nuclear medicine specialists scored FDG abnormalities using 5 point scale system for receiver operating characteristic (ROC) curve analysis.

Results

63 suspected of metastatic or recurrent lesions were evaluated and correlated by the final confirmation by pathological findings or clinical courses (malignant 26/benign 37). Semiconductor PET showed sensitivity of 92.3 % (24/26), specificity of 51.4 % (19/37), and accuracy of 68.2 % (43/63), while LSO-PET showed sensitivity of 84.6 % (22/26), specificity of 16.2 %(6/37), and accuracy of 44.4 % (28/63), respectively. Especially, semiconductor PET accurately diagnosed as true negative in the 13 of 14 lesions only detected by LSO-PET. ROC analyses revealed the diagnostic superiority of semiconductor PET from location of- and area under curve particularly in the study of small (≤10 mm) lesions.

Conclusion

A new novel semiconductor PET scanner can increase diagnostic accuracy with reduction in false positive findings in the HNC patients mainly due to higher spatial resolution and lower noise than the LSO-PET. This new technology can lead to more accurate diagnosis and the more optimal therapeutic tactics in head and neck surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shiga T, Morimoto Y, Kubo N, et al. A new PET scanner with semiconductor detectors enables better identification of intratumoral inhomogeneity. J Nucl Med. 2009;50(1):148–55.

    Article  PubMed  Google Scholar 

  2. Ueno Y, Morimoto Y, Tsuchiya K, et al. Basic performance test of a prototype PET scanner using CdTe semiconductor detectors. IEEE Trans Nucl Sci. 2009;56(1):24–8.

    Article  Google Scholar 

  3. Morimoto Y, Ueno Y, Takeuchi W, et al. Development of a 3D brain PET scanner using CdTe semiconductor detectors and its first clinical application. IEEE Trans Nucl Sci. 2011;58:2181–9.

    Article  CAS  Google Scholar 

  4. Mori I, Takayama T, Motomura N. The CdTe detector module and its imaging performance. Ann Nucl Med. 2001;15(6):487–94.

    Article  PubMed  CAS  Google Scholar 

  5. Darambara DG, Todd-Pokropek A. Solid state detectors in nuclear medicine. J Nucl Med. 2002;46(1):3–7.

    CAS  Google Scholar 

  6. Kiyono Y, Kuge Y, Katada Y, Kawashima H, Magata Y, Saji H. Applicability of a high-resolution small semiconductor gamma camera to small animal imaging. Nucl Med Commun. 2007;28(9):736–41.

    Article  PubMed  Google Scholar 

  7. Kubo N, Zhao S, Fujiki Y, et al. Evaluating performance of a pixel array semiconductor SPECT system for small animal imaging. Ann Nucl Med. 2005;19(7):633–9.

    Article  PubMed  Google Scholar 

  8. Peng BH, Levin CS. Recent development in PET instrumentation. Curr Pharm Biotechnol. 2010;11(6):555–71.

    Article  PubMed  CAS  Google Scholar 

  9. Stickel JR, Cherry SR. High-resolution PET detector design: modelling components of intrinsic spatial resolution. Phys Med Biol. 2005;50(2):179–95.

    Article  PubMed  Google Scholar 

  10. Wang D, Schultz CJ, Jursinic PA, et al. Initial experience of FDG-PET/CT guided IMRT of head-and-neck carcinoma. Int J Radiat Oncol Biol Phys. 2006;65(1):143–51.

    Article  PubMed  Google Scholar 

  11. Ford EC, Herman J, Yorke E, Wahl RL. 18F-FDG PET/CT for image-guided and intensity-modulated radiotherapy. J Nucl Med. 2009;50(10):1655–65.

    Article  PubMed  Google Scholar 

  12. Rothschild S, Studer G, Seifert B, et al. PET/CT staging followed by intensity-modulated radiotherapy (IMRT) improves treatment outcome of locally advanced pharyngeal carcinoma: a matched-pair comparison. Radiat Oncol. 2007;2:22.

    Article  PubMed  Google Scholar 

  13. Castadot P, Geets X, Lee JA, Gregoire V. Adaptive functional image-guided IMRT in pharyngo-laryngeal squamous cell carcinoma: is the gain in dose distribution worth the effort? Radiother Oncol. 2011;101(3):343–50.

    Article  PubMed  Google Scholar 

  14. Nishioka T, Shiga T, Shirato H, et al. Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys. 2002;53(4):1051–7.

    Article  PubMed  Google Scholar 

  15. Geets X, Tomsej M, Lee JA, et al. Adaptive biological image-guided IMRT with anatomic and functional imaging in pharyngo-laryngeal tumors: impact on target volume delineation and dose distribution using helical tomotherapy. Radiother Oncol. 2007;85(1):105–15.

    Article  PubMed  Google Scholar 

  16. Gupta T, Jain S, Agarwal JP, et al. Diagnostic performance of response assessment FDG-PET/CT in patients with head and neck squamous cell carcinoma treated with high-precision definitive (chemo)radiation. Radiother Oncol. 2010;97(2):194–9.

    Article  PubMed  Google Scholar 

  17. Deantonio L, Beldi D, Gambaro G, et al. FDG-PET/CT imaging for staging and radiotherapy treatment planning of head and neck carcinoma. Radiat Oncol. 2008;3:29.

    Article  PubMed  Google Scholar 

  18. Veit-Haibach P, Luczak C, Wanke I, et al. TNM staging with FDG-PET/CT in patients with primary head and neck cancer. Eur J Nucl Med Mol Imaging. 2007;34(12):1953–62.

    Article  PubMed  Google Scholar 

  19. Murakami R, Uozumi H, Hirai T, et al. Impact of FDG-PET/CT imaging on nodal staging for head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2007;68(2):377–82.

    Article  PubMed  Google Scholar 

  20. Schoder H, Carlson DL, Kraus DH, et al. 18F-FDG PET/CT for detecting nodal metastases in patients with oral cancer staged N0 by clinical examination and CT/MRI. J Nucl Med. 2006;47(5):755–62.

    PubMed  Google Scholar 

  21. Syed R, Bomanji JB, Nagabhushan N, et al. Impact of combined (18)F-FDG PET/CT in head and neck tumours. Br J Cancer. 2005;92(6):1046–50.

    Article  PubMed  CAS  Google Scholar 

  22. Guido A, Fuccio L, Rombi B, et al. Combined 18F-FDG-PET/CT imaging in radiotherapy target delineation for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2009;73(3):759–63.

    Article  PubMed  Google Scholar 

  23. Abgral R, Querellou S, Potard G, et al. Does 18F-FDG PET/CT improve the detection of posttreatment recurrence of head and neck squamous cell carcinoma in patients negative for disease on clinical follow-up? J Nucl Med. 2009;50(1):24–9.

    Article  PubMed  Google Scholar 

  24. Fakhry N, Barberet M, Lussato D, et al. Role of [18]F-FDG PET-CT in the management of the head and neck cancers. Bull Cancer. 2006;93(10):1017–25.

    PubMed  CAS  Google Scholar 

  25. Nakagawa T, Yamada M, Suzuki Y. 18F-FDG uptake in reactive neck lymph nodes of oral cancer: relationship to lymphoid follicles. J Nucl Med. 2008;49(7):1053–9.

    Article  PubMed  Google Scholar 

  26. Eckardt J, Herzog H, Schafers KP, Kapplinger S, Schober O. Impact of the lower energy threshold on the NEMA NU2-2001 count-rate performance of a LSO based PET-CT scanner. Nuklearmedizin. 2008;47(5):210–4.

    PubMed  CAS  Google Scholar 

  27. Casey M. Point spread function reconstruction in PET. Oxford: Siemens Molecular Imaging; 2007.

    Google Scholar 

  28. Panin V, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging. 2006;25:907–21.

    Article  PubMed  Google Scholar 

  29. Chen CH. Simultaneous recovery of size and radioactivity concentration of small spheroids with PET data. J Nucl Med. 1999;40:118–30.

    PubMed  CAS  Google Scholar 

  30. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. effect of object size. J Comput Assist Tomogr. 1979;3:299–308.

    Article  PubMed  CAS  Google Scholar 

  31. Ng SH, Yen TC, Chang JT, et al. Prospective study of 18F fluorodeoxyglucose positron emission tomography and computed tomography and magnetic resonance imaging in oral cavity squamous cell carcinoma with palpably negative neck. J Clin Oncol. 2006;24:4371–6.

    Article  PubMed  Google Scholar 

  32. Yen TC, Chang JT, Ng SH, et al. Staging of untreated squamous cell carcinoma of buccal mucosa with 18F-FDG PET: comparison with head and neck CT/MRI and histopathology. J Nucl Med. 2005;46:775–81.

    PubMed  Google Scholar 

  33. de Jong HWAM, Knoess C, Lammertsma AA, et al. Performance characteristics of the high resolution research tomograph comparison of three prototypes. Paper presented at Nuclear Science Symposium Conference Record, 2004 IEEE, pp 16–22; 2004.

  34. de Jong HW, van Velden FH, Kloet RW, Buijs FL, Boellaard R, Lammertsma AA. Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol. 2007;52(5):1505–26.

    Article  PubMed  Google Scholar 

  35. Bailey DL, Miller MP, Spinks TJ, et al. Experience with fully 3D PET and implications for future high-resolution 3D tomographs. Phys Med Biol. 1998;43(4):777–86.

    Article  PubMed  CAS  Google Scholar 

  36. Antoch G, Saoudi N, Kuehl H, et al. Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol. 2004;22(21):4357–68.

    Article  PubMed  Google Scholar 

  37. Bloch BN, Lenkinski RE, Rofsky NM. The role of magnetic resonance imaging (MRI) in prostate cancer imaging and staging at 1.5 and 3 Tesla: the Beth Israel Deaconess Medical Center (BIDMC) approach. Cancer Biomark. 2008;4(4–5):251–62.

    PubMed  Google Scholar 

  38. Teo BK, Seo Y, Bacharach SL, et al. Partial-volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data. J Nucl Med. 2007;48:802–10.

    PubMed  Google Scholar 

  39. Knausl B, Hirtl A, Dorbrozemsky G, et al. PET based volume segmentation with emphasis on the iterative treu X algorithm. Z Med Phys (in press).

  40. Cojocariu OM, Huguet F, Lefevre M, Perie S. Prognosis and predictive factors in head-and-neck cancers. Bull Cancer. 2009;96(4):369–78.

    PubMed  CAS  Google Scholar 

  41. Hass HG, Schmidt A, Nehls O, Kaiser S. DNA ploidy, proliferative capacity and intratumoral heterogeneity in primary and recurrent head and neck squamous cell carcinomas (HNSCC)—potential implications for clinical management and treatment decisions. Oral Oncol. 2008;44(1):78–85.

    Article  PubMed  CAS  Google Scholar 

  42. Gasparotto D, Maestro R. Molecular approaches to the staging of head and neck carcinomas (review). Int J Oncol. 2007;31(1):175–80.

    PubMed  Google Scholar 

  43. Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology. 2004;231(2):305–32.

    Article  PubMed  Google Scholar 

  44. de Bree R, Castelijns JA, Hoekstra OS, Leemans CR. Advances in imaging in the work-up of head and neck cancer patients. Oral Oncol. 2009;45(11):930–5.

    Article  PubMed  Google Scholar 

  45. Kyzas PA, Evangelou E, Denaxa-Kyza D, Ioannidis JP. 18F-fluorodeoxyglucose positron emission tomography to evaluate cervical node metastases in patients with head and neck squamous cell carcinoma: a meta-analysis. J Natl Cancer Inst. 2008;100(10):712–20.

    Article  PubMed  Google Scholar 

  46. Subramaniam RM, Truong M, Peller P, Sakai O, Mercier G. Fluorodeoxyglucose-positron-emission tomography imaging of head and neck squamous cell cancer. AJNR Am J Neuroradiol. 2010;31(4):598–604.

    Article  PubMed  CAS  Google Scholar 

  47. Chu HR, Kim JH, Yoon DY, Hwang HS, Rho YS. Additional diagnostic value of (18)F-FDG PET-CT in detecting retropharyngeal nodal metastases. Otolaryngol Head Neck Surg. 2009;141(5):633–8.

    Article  PubMed  Google Scholar 

  48. Salaun PY, Abgral R, Querellou S, et al. Does 18fluoro-fluorodeoxyglucose positron emission tomography improve recurrence detection in patients treated for head and neck squamous cell carcinoma with negative clinical follow-up? Head Neck. 2007;29(12):1115–20.

    Article  PubMed  Google Scholar 

  49. Yamazaki Y, Saitoh M, Notani K, et al. Assessment of cervical lymph node metastases using FDG-PET in patients with head and neck cancer. Ann Nucl Med. 2008;22(3):177–84.

    Article  PubMed  Google Scholar 

  50. Shiraki N, Hara M, Ogino H, et al. False-positive and true-negative hilar and mediastinal lymph nodes on FDG-PET—radiological–pathological correlation. Ann Nucl Med. 2004;18(1):23–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank nuclear medicine technologists, Hidehiko Omote and Hiroshi Arai. We are grateful to Dr Kenji Hirata and Naoya Hattori for clinical study.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Shiga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takei, T., Shiga, T., Morimoto, Y. et al. A novel PET scanner with semiconductor detectors may improve diagnostic accuracy in the metastatic survey of head and neck cancer patients. Ann Nucl Med 27, 17–24 (2013). https://doi.org/10.1007/s12149-012-0654-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-012-0654-8

Keywords

Navigation