Skip to main content
Log in

Using the Gamma Generalized Linear Model for Modeling Continuous, Skewed and Heteroscedastic Outcomes in Psychology

  • Published:
Current Psychology Aims and scope Submit manuscript

Abstract

Some researchers in psychology have ordinarily relied on traditional linear models when assessing the relationship between predictor(s) and a continuous outcome, even when the assumptions of the traditional model (e.g., normality, homoscedasticity) are not satisfied. Of those who abandon the traditional linear model, some opt for robust versions of the ANOVA and regression statistics that usually focus on relationships for the typical or average case instead of trying to model relationships for the full range of relevant cases. Generalized linear models, on the other hand, model the relationships among variables using all available and relevant data and can be appropriate under certain conditions of non-normality and heteroscedasticity. In this paper, we summarize the advantages and limitations of using generalized linear models with continuous outcomes and provide two simplified examples that highlight the methodology involved in selecting, comparing, and interpreting models for positively skewed outcomes and certain heteroscedastic relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akaike, H. (1974). A new look at the statistical model identification. Automatic Control, IEEE Transactions, 19(6), 716--723. doi:10.1109/TAC.1974.1100705.

  • Arpin-Cribbie, C. A., Irvine, J., & Ritvo, P. (2012). Web-based cognitive-behavioral therapy for perfectionism: a randomized controlled trial. Psychotherapy Research, 22, 194–207. doi:10.1080/10503307.2011.637242.

    Article  PubMed  Google Scholar 

  • Barnwell, S. S., Earleywine, M., & Wilcox, R. (2006). Cannabis, motivation, and life satisfaction in an internet sample. Substance Abuse Treatment, Prevention, and Policy, 1(1), 2. doi:10.1186/1747-597X-1-2.

  • Blanca, M. J., Arnau, J., López-Montiel, D., Bono, R., & Bendayan, R. (2013). Skewness and kurtosis in real data samples. Methodology European Journal of Research Methods for the Behavioral and Social Sciences, 9, 78–84. doi:10.1027/1614-2241/a000057.

    Article  Google Scholar 

  • Blough, D. K., Madden, C. W., & Hornbrook, M. C. (1999). Modeling risk using generalized linear models. Journal of Health Economics, 18, 153–171. doi:10.1016/S0167-6296(98)00032-0.

    Article  PubMed  Google Scholar 

  • Bonett, D. G., & Price, R. M. (2002). Statistical inference for a linear function of medians: confidence intervals, hypothesis testing, and sample size requirements. Psychological Methods, 7(3), 370. doi:10.1037/1082-989X.7.3.370.

  • Coxe, S., Aiken, L. S., & West, S. G. (2013). Generalized linear models. In T. Little (Ed.), Oxford handbook of quantitative methods, Vol 2: statistical analysis. New York: Oxford University Press.

    Google Scholar 

  • Cribbie, R. A., Fiksenbaum, L., Keselman, H. J., & Wilcox, R. R. (2012). Effect of non-normality on test statistics for one-way independent groups designs. British Journal of Mathematical and Statistical Psychology, 65, 56–73. doi:10.1111/j.2044-8317.2011.02014.x.

    Article  PubMed  Google Scholar 

  • Cui, L., Shi, G., & Oei, T. P. (2013). A study of cognitive vulnerability–stress model of depressive symptoms among Chinese adolescents. Stress and Health, 29(5), 383--391. doi:10.1002/smi.2484.

  • Denson, T. F., & Earleywine, M. (2006). Decreased depression in marijuana users. Addictive Behaviors, 31(4), 738--742. doi:10.1016/j.addbeh.2005.05.052.

  • Dick, E. J. (2004). Beyond “lognormal versus gamma”: discrimination among error distributions for generalized linear models. Fisheries Research, 70, 351–366. doi:10.1016/j.fishres.2004.08.013.

    Article  Google Scholar 

  • Duan, N. (1983). Smearing estimate: a nonparametric retransformation method. Journal of the American Statistical Association, 78, 605–610. doi:10.1080/01621459.1983.10478017.

    Article  Google Scholar 

  • Entink, R. H., Linden, W. J., & Fox, J. P. (2009). A Box–Cox normal model for response times. British Journal of Mathematical and Statistical Psychology, 62(3), 621--640. doi:10.1348/000711008X374126.

  • Erceg-Hurn, D. M., & Mirosevich, V. M. (2008). Modern robust statistical methods: an easy way to maximize the accuracy and power of your research. American Psychologist, 63(7), 591. doi:10.1037/0003-066X.63.7.591.

  • Fox, J. (2008). Applied regression analysis and generalized linear models: second edition. Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  • Gibb, B. E., Benas, J. S., Crossett, S. E., & Uhrlass, D. J. (2007). Emotional maltreatment and verbal victimization in childhood. Journal of Emotional Abuse, 7, 59–73. doi:10.1300/J135v07n02_04.

    Article  Google Scholar 

  • Grissom, R. J. (2000). Heterogeneity of variance in clinical data. Journal of Consulting and Clinical Psychology, 68, 155–165. doi:10.1037/0022-006X.68.1.155.

    Article  PubMed  Google Scholar 

  • Hastie, T., & Tibshirani, R. (1986). Generalized additive models. Statistical Science, 297--310.

  • Hewitt, P. L., & Flett, G. L. (1991). Perfectionism in the self and social contexts: conceptualization, assessment, and association with psychopathology. Journal of Personality and Social Psychology, 60, 456–470. doi:10.1037/0022-3514.60.3.456.

    Article  PubMed  Google Scholar 

  • Hollon, S. D., & Kendall, P. C. (1980). Cognitive self-statements in depression: development of an automatic thoughts questionnaire. Cognitive Therapy and Research, 4(4), 383--395. doi:10.1007/BF01178214.

  • Hosmer, D.W., & Lemeshow, S. (1995). Applied logistic regression (Second ed.). New York: John Wiley & Sons.

  • Hurvich, C. M., & Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika, 76(2), 297--307. doi:10.1093/biomet/76.2.297.

  • Keselman, H. J., Huberty, C., Lix, L., Olejnik, S., Cribbie, R. A., Donahue, B., Kowalchuk, R. K., Lowman, L. L., Petoskey, M. D., Keselman, J. C., & Levin, J. R. (1998). Statistical practices of educational researchers: an analysis of their ANOVA, MANOVA, and ANCOVA analyses. Review of Educational Research, 68, 350–386. doi:10.3102/00346543068003350.

    Article  Google Scholar 

  • Keselman, H. J., Wilcox, R. R., Othman, A. R., & Fradette, K. (2002). Trimming, transforming statistics and bootstrapping: circumventing the biasing effects of heterescedasticity and nonnormality. Journal of Modern Applied Statistical Methods, 1, 288–309. Retrieved from http://digitalcommons.wayne.edu/cgi/viewcontent.cgi?article=1670&context=jmasm

  • Lindeberg, S. I., Eek, F., Lindbladh, E., Ostergren, P. O., Hansen, A. M., & Karlson, B. (2008). Exhaustion measured by the SF-36 vitality scale is associated with a flattened diurnal cortisol profile. Psychoneuroendocrinology, 33, 471–477. doi:10.1016/j.psyneuen.2008.01.005.

    Article  PubMed  Google Scholar 

  • Long, J. S. (1997). Regression models for categorical and limited dependent variables. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Mall, S., Lund, C., Vilagut, G., Alonso, J., Williams, D. R., & Stein, D. J. (2015). Days out of role due to mental and physical illness in the South African stress and health study. Social Psychiatry and Psychiatric Epidemiology, 50, 461–468. doi:10.1007/s00127-014-0941-x.

    Article  PubMed  Google Scholar 

  • Manning, W. (1998). The logged dependent variable, heteroscedasticity, and the retransformation problem. Journal of Health Economics, 17, 283–295. doi:10.1016/S0167-6296(98)00025-3.

    Article  PubMed  Google Scholar 

  • Manning, W., Basu, A., & Mullahy, J. (2005). Generalized modeling approaches to risk adjustment of skewed outcomes data. Journal of Health Economics, 24, 465–488. doi:10.1016/j.jhealeco.2004.09.011.

    Article  PubMed  Google Scholar 

  • Mittlböck, M., & Heinzl, H. (2002). Measures of explained variation in gamma regression models. Communications in Statistics: Simulation and Computation, 31, 61–73. doi:10.1081/SAC-9687282.

    Article  Google Scholar 

  • Neal, D., & Simons, J. (2007). Inference in regression models of heavily skewed alcohol use data: a comparison of ordinary least squares, generalized linear models, and bootstrap resampling. Psychology of Addictive Behaviors, 21, 441–452. doi:10.1037/0893-164X.21.4.441.

    Article  PubMed  Google Scholar 

  • Nelder, J. A., & Wedderburn, R. W. M. (1972). General linearized models. Journal of the Royal Statistical Society: Series A, 135, 370–384. doi:10.2307/2344614.

    Article  Google Scholar 

  • Osborne, J. (2010). Improving your data transformations: applying the Box-Cox transformation. Practical Assessment, Research & Evaluation, 15, 1–9. Retrieved from http://pareonline.net/getvn.asp?v=15&n=12.

  • Pirbaglou, M., Cribbie, R. A., Irvine, J., Radhu, N., Vora, K., & Ritvo, P. (2013). Perfectionism, anxiety, and depressive distress: evidence for the mediating role of negative automatic thoughts and anxiety sensitivity. Journal of American College Health, 61, 477–483. doi:10.1080/07448481.2013.833932.

    Article  PubMed  Google Scholar 

  • Pregibon, D. (1980). Goodness of link tests for generalized linear models. Applied Statistics 29, 15–24.

  • Rosopa, P. J., Schaffer, M. M., & Schroeder, A. N. (2013). Managing heteroscedasticity in general linear models. Psychological Methods, 18(3), 335. doi:10.1037/a0032553.

  • Sayer, N. A., Sackheim, H. A., Moeller, J. R., Prudic, J., Devanand, D. P., Coleman, E. A., & Kiersky, J. E. (1993). The relations between observer-rating and self-report of depressive symptomatology. Psychological Assessment, 5, 350–360. doi:10.1037/1040-3590.5.3.350.

    Article  Google Scholar 

  • Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464. doi:10.2307/2958889.

  • Sohn, B. Y., & Kim, G. B. (1997). Detection of outliers in weighted least squares regression. Journal of Applied Mathematics and Computing, 4, 501–512. doi:10.1007/BF03014491.

    Google Scholar 

  • Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (fourth edition). New York: Springer.

    Book  Google Scholar 

  • Wang, X., Dang, X., Peng, H. & Zhang, H. (2009). The Theil-Sen estimators in multiple linear regression models. Manuscript available at: http://home.olemiss.edu/~xdang/papers/MTSE.pdf.

  • Welch, B. L. (1938). The significance of the difference between two means when the population variances are unequal. Biometrika, 29(3--4), 350--362. doi:10.1093/biomet/29.3-4.350.

  • Welsh, A. H. (1987). The trimmed mean in the linear model. Annals of Statistics, 15, 20–36. doi:10.1214/aos/1176350248.

    Article  Google Scholar 

  • Wilcox, R. (2012). Introduction to robust estimation and hypothesis testing (3rd ed.). San Diego, CA: Academic Press.

    Google Scholar 

  • Wilcox, R. R., & Keselman, H. J. (2003). Modern robust data analysis methods: measures of central tendency. Psychological Methods, 8, 254–274. doi:10.1037/1082-989X.8.3.254.

    Article  PubMed  Google Scholar 

  • Wilcox, R. R., & Keselman, H. J. (2012). Modern regression methods that can substantially increase power and provide a more accurate understanding of associations. European Journal of Personality, 26, 165–174. doi:10.1002/per.860.

    Article  PubMed  Google Scholar 

  • Wilcox, R. R., Granger, D. A., Szanton, S., & Clark, F. (2014). Cortisol diurnal patterns, associations with depressive symptoms, and the impact of intervention in older adults: Results using modern robust methods aimed at dealing with low power due to violations of standard assumptions. Hormones and Behavior, 65(3), 219--225.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria K.Y. Ng.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This research was supported by the Social Sciences and Humanities Research Council of Canada.

Conflict of Interest

Both authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, V.K., Cribbie, R.A. Using the Gamma Generalized Linear Model for Modeling Continuous, Skewed and Heteroscedastic Outcomes in Psychology. Curr Psychol 36, 225–235 (2017). https://doi.org/10.1007/s12144-015-9404-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12144-015-9404-0

Keywords

Navigation