Skip to main content
Log in

Altering the mobility-time continuum: nonlinear scan functions for targeted high resolution trapped ion mobility-mass spectrometry

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Trapped ion mobility spectrometry (TIMS) is a versatile high resolution technique that provides the user with the flexibility to adjust the mobility range of interest, duty cycle (up to 100 %), and resolving power (up to ~300) according to the application requirements. Furthermore, TIMS offers the flexibility of operating as either a mobility-selective or conventional ion funnel, thus permitting ion mobility separations to be turned on or off. Here, we extend the flexibility of TIMS by introducing multilinear and nonlinear scanning methods that allow enhanced resolution in user-defined mobility regions. The performance of the new method is demonstrated using a variety of nonlinear scan functions that allow the resolving power to be continuously varied across the mobility spectrum. Further, we demonstrate that mobility analysis can be targeted over disparate regions using a multilinear scan function. In this example, high resolution mobility analysis is targeted on two analytes on opposite ends of a mobility range, while other ions that fall between the regions of interest remain unanalyzed. Using this approach, the resolving power for targeted species was increased by a factor of two over the conventional linear scanning approach (R ~60 versus ~120) without reducing the duty cycle of the TIMS measurement. Importantly, in such an analysis, ions in the untargeted regions are not mobility analyzed, however, they are also not discarded. Rather, these ions are ejected for downstream mass analysis. In this sense, TIMS bridges the gap between dispersive and scanning mobility techniques. That is, TIMS disperses ions according to their elution voltage, however, TIMS can also perform target mobility analyses without eliminating untargeted ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Purves RW, Guevremont R (1999) Electrospray ionization high-field asymmetric waveform ion mobility SpectrometryGêÆMass spectrometry. Anal Chem 71:2346–2357

    Article  CAS  Google Scholar 

  2. Shvartsburg AA, Li F, Tang K, Smith RD (2006) High-resolution field asymmetric waveform ion mobility spectrometry using new planar geometry analyzers. Anal Chem 78:3706–3714

    Article  CAS  Google Scholar 

  3. Shvartsburg A, Seim T, Danielson W, Norheim R, Moore R, Anderson G, Smith R (2013) High-definition differential ion mobility spectrometry with resolving power up to 500. J Am Soc Mass Spectrom 24:109–114

    Article  CAS  Google Scholar 

  4. Rader DJ, McMurry PH (1986) Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation. J Aerosol Sci 17:771–787

    Article  CAS  Google Scholar 

  5. de la Mora JF, Ude S, Thomson BA (2006) The potential of differential mobility analysis coupled to MS for the study of very large singly and multiply charged proteins and protein complexes in the gas phase. Biotechnol J 1:988–997

    Article  Google Scholar 

  6. Vidal-de-Miguel G, Macia M, Cuevas J (2012) Transversal Modulation Ion Mobility Spectrometry (TM-IMS), a new mobility filter overcoming turbulence related limitations. Anal Chem 84:7831–7837

  7. Tang K, Shvartsburg AA, Lee HN, Prior DC, Buschbach MA, Li F, Tolmachev AV, Anderson GA, Smith RD (2005) High-sensitivity ion mobility spectrometry/mass spectrometry using electrodynamic ion funnel interfaces. Anal Chem 77:3330–3339

    Article  CAS  Google Scholar 

  8. Koeniger SL, Merenbloom SI, Valentine SJ, Jarrold MF, Udseth HR, Smith RD, Clemmer DE (2006) An IMS-IMS analogue of MS-MS. Anal Chem 78:4161–4174

    Article  CAS  Google Scholar 

  9. Clowers BH, Ibrahim YM, Prior DC, Danielson WF, Belov ME, Smith RD (2008) Enhanced ion utilization efficiency using an electrodynamic ion funnel trap as an injection mechanism for ion mobility spectrometry. Anal Chem 80:612–623

    Article  CAS  Google Scholar 

  10. Kemper PR, Dupuis NF, Bowers MT (2009) A new, higher resolution, ion mobility mass spectrometer. Int J Mass Spectrom 287:46–57

    Article  CAS  Google Scholar 

  11. May JC, Russell DH (2011) A mass-selective variable-temperature drift tube ion mobility-mass spectrometer for temperature dependent ion mobility studies. J Am Soc Mass Spectrom 22:1134–1145

    Article  CAS  Google Scholar 

  12. May JC, Goodwin CR, Lareau NM, Leaptrot KL, Morris CB, Kurulugama RT, Mordehai A, Klein C, Barry W, Darland E et al (2014) Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal Chem 86:2107–2116

    Article  CAS  Google Scholar 

  13. Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH (2004) Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom 18:2401–2414

    Article  CAS  Google Scholar 

  14. Gillig KJ, Ruotolo BT, Stone EG, Russell DH (2004) An electrostatic focusing ion guide for ion mobility-mass spectrometry. Int J Mass Spectrom 239:43–49

    Article  CAS  Google Scholar 

  15. Bush MF, Hall Z, Giles K, Hoyes J, Robinson CV, Ruotolo BT (2010) Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal Chem 82:9557–9565

    Article  CAS  Google Scholar 

  16. Blase RC, Silveira JA, Gillig KJ, Gamage CM, Russell DH (2011) Increased ion transmission in IMS: a high resolution, periodic-focusing DC ion guide ion mobility spectrometer. Int J Mass Spectrom 301:166–173

    Article  CAS  Google Scholar 

  17. Silveira JA, Jeon J, Gamage CM, Pai PJ, Fort KL, Russell DH (2012) Damping factor links periodic focusing and uniform field ion mobility for accurate determination of collision cross sections. Anal Chem 84:2818–2824

    Article  CAS  Google Scholar 

  18. Allen SJ, Giles K, Gilbert T, Bush MF (2016) Ion mobility mass spectrometry of peptide, protein, and protein complex ions using a radio-frequency confining drift cell. Analyst 141:884–891

    Article  CAS  Google Scholar 

  19. Ibrahim YM, Garimella SVB, Tolmachev AV, Baker ES, Smith RD (2014) improving ion mobility measurement sensitivity by utilizing helium in an ion funnel trap. Anal Chem 86:5295–5299

    Article  CAS  Google Scholar 

  20. Kurulugama RT, Nachtigall FM, Lee S, Valentine SJ, Clemmer DE (2011) Overtone mobility spectrometry: part 1. experimental observations. J Am Soc Mass Spectrom 20:729–737

    Article  Google Scholar 

  21. Merenbloom SI, Glaskin RS, Henson ZB, Clemmer DE (2009) High-resolution ion cyclotron mobility spectrometry. Anal Chem 81:1482–1487

    Article  CAS  Google Scholar 

  22. Giles K, Wildgoose JL, Pringle SD et al. (2014) pp. In 62nd Annual ASMS Conference on Mass Spectrometry and Allied Topics, Baltimore, MD, June 15–19, 2014

  23. Glaskin RS, Ewing MA, Clemmer DE (2013) Ion trapping for ion mobility spectrometry measurements in a cyclical drift tube. Anal Chem 85:7003–7008

    Article  CAS  Google Scholar 

  24. Fernandez-Lima F, Kaplan D, Suetering J, Park M (2011) Gas-phase separation using a trapped ion mobility spectrometer. Int J Ion Mobil Spec 14:93–98

    Article  Google Scholar 

  25. Hernandez DR, DeBord JD, Ridgeway ME, Kaplan DA, Park MA, Fernandez-Lima F (2014) Ion dynamics in a trapped ion mobility spectrometer. Analyst 139:1913–1921

    Article  CAS  Google Scholar 

  26. Michelmann K, Silveira JA, Ridgeway ME, Park MA (2015) Fundamentals of trapped ion mobility spectrometry. J Am Soc Mass Spectrom 26:14–24

  27. Silveira JA, Michelmann K, Ridgeway ME, Park M (2016) Fundamentals of trapped ion mobility spectrometry part II: fluid dynamics. J Am Soc Mass Spectrom. 27:585–595

  28. Silveira JA, Ridgeway ME, Park MA (2014) High resolution trapped ion mobility spectrometery of peptides. Anal Chem 86:5624–5627

    Article  CAS  Google Scholar 

  29. Fernandez-Lima F, Kaplan DA, Park MA (2011) Integration of trapped ion mobility spectrometry with mass spectrometry. Rev Sci Instrum 82:126106

    Article  CAS  Google Scholar 

  30. Ridgeway ME, Silveira JA, Meier JE, Park MA (2015) Microheterogeneity within conformational states of ubiquitin revealed by high resolution trapped ion mobility spectrometry. Analyst 140:6964–6972

    Article  CAS  Google Scholar 

  31. Meier F, Beck S, Grassl N, Lubeck M, Park MA, Raether O, Mann M (2015) Parallel Accumulation-Serial Fragmentation (PASEF): multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device. J Proteome Res 14:5378–5387

    Article  CAS  Google Scholar 

  32. Silveira JA, Ridgeway ME, Laukien FH, Mann M, Park MA (2016) Parallel accumulation for 100% duty cycle mass spectrometry. doi:10.1016/j.ijms.2016.03.004

Download references

Acknowledgments

The authors thank Jacob Meier for the acquisition of experimental datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melvin A. Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silveira, J.A., Danielson, W., Ridgeway, M.E. et al. Altering the mobility-time continuum: nonlinear scan functions for targeted high resolution trapped ion mobility-mass spectrometry. Int. J. Ion Mobil. Spec. 19, 87–94 (2016). https://doi.org/10.1007/s12127-016-0196-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-016-0196-1

Keywords

Navigation