Skip to main content

Advertisement

Log in

Coupling electrospray corona discharge, charge reduction and ion mobility mass spectrometry: From peptides to large macromolecular protein complexes

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

We present the design and implementation of a home-built point-to-plane corona discharge probe, which rapidly and efficiently charge reduces biological ions generated by electrospray ionization (ESI). The molecules analysed ranged from small peptides such as Glu-fibrinopeptide B (1.5 kDa), small proteins such as myoglobin (16.9 kDa), polymers such as polyethylene glycol (PEG 10 k) which all showed intense singly charged ions; to large native multiprotein complexes such as GroEL (802 kDa) which show a broad range of charge-reduced species. The corona discharge probe operates at atmospheric pressure and was directly interfaced with a standard-ESI or nanoflow-ESI source of quadrupole ion mobility time-of-flight mass spectrometer. The corona discharge probe is completely modular and could potentially be mounted to any commercial or research grade mass spectrometer with an ESI source. The level of charge reduction is precisely controlled by the applied voltage and/or probe gas flow rate and when in operation, results in approximately a 50 % reduction in total ion current. We also present the combination of corona discharge and travelling wave ion mobility and assign helium collision cross-section values (ΩHe) to the charge reduced species of the native protein complex pyruvate kinase. It would appear that the ΩHe of the +20 charge state for pyruvate kinase is approximately 20 % smaller than the +35 charge state. Finally, we discuss the potential benefits and concerns of utilising charge reduced protein species as a means of extending the travelling wave collision cross-section calibration range over that which is already published.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71

    Article  CAS  Google Scholar 

  2. Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68(1):1–8

    Article  CAS  Google Scholar 

  3. Bier ME, Bruins AP, Chernushevich IV et al (1997) Electrospray ionisation mass spectrometry: fundamentals, instrumentation and applications (Ed Cole RB), Wiley-Interscience Publication, John Wiley & Sons Inc

  4. Uetrecht C, Versluis C, Watts NR, Wingfield PT, Steven AC, Heck AJ (2008) Stability and shape of hepatitis B virus capsids in vacuo. Angew Chem Int Ed Engl 47(33):6247–6251. doi:10.1002/anie.200802410

    Article  CAS  Google Scholar 

  5. Uetrecht C, Versluis C, Watts NR, Roos WH, Wuite GJ, Wingfield PT, Steven AC, Heck AJ (2008) High-resolution mass spectrometry of viral assemblies: molecular composition and stability of dimorphic hepatitis B virus capsids. Proc Natl Acad Sci U S A 105(27):9216–9220. doi:10.1073/pnas.0800406105

    Article  CAS  Google Scholar 

  6. Loo JA, Holler TP, Foltin SK, McConnell P, Banotai CA, Horne NM, Mueller WT, Stevenson TI, Mack DP (1998) Application of electrospray ionization mass spectrometry for studying human immunodeficiency virus protein complexes. Proteins Suppl 2:28–37

    Google Scholar 

  7. Iribarne JV, Thomson BA (1976) On the evaporation of small ions from charged droplets. J Chem Phys 64:2287–2295. doi:10.1063/1.432536

    Article  CAS  Google Scholar 

  8. Dole M, Mach LL, Hines RL, Mobley RC, Ferguson LP, Alice MB (1968) MOlecular beams of macroions. J Chem Phys 49:2240–2250. doi:10.1063/1.1670391

    Article  CAS  Google Scholar 

  9. Fenn JB (2003) Electrospray wings for molecular elephants (Nobel lecture). Angew Chem Int Ed Engl 42(33):3871–3894. doi:10.1002/anie.200300605

    Article  CAS  Google Scholar 

  10. Ferrige AG, Seddon MJ, Green BN, Jarvis SA, Skilling J (1992) Disentangling electrospray spectra with maximum entropy. Rapid Commun Mass Spectrom 6:707–711

    Article  CAS  Google Scholar 

  11. Karas M, Bachman D, Hillenkamp F (1987) Int J Mass Spectrom Ion Processes 78:53–68

    Article  CAS  Google Scholar 

  12. Hillenkamp F, Karas M, Beavis RC, Chait BT (1991) Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem 63(24):1193A–1203A

    CAS  Google Scholar 

  13. Pasch H, Schrepp WP (2003) MALDI TOF Mass Spectrometry of Synthetic Polymers (Springer Laboratory, Springer-Verlag, Berlin, Heidelberg)

  14. Smith RD, Udseth HR, Wahl JH, Goodlett DR, Hofstadler SA (1996) Capillary electrophoresis-mass spectrometry. Methods Enzymol 271:448–486

    Article  CAS  Google Scholar 

  15. Scalf M, Westphall MS, Krause J, Kaufman SL, Smith LM (1999) Controlling charge states of large ions. Science 283(5399):194–197

    Article  CAS  Google Scholar 

  16. Scalf M, Westphall MS, Smith LM (2000) Charge reduction electrospray mass spectrometry. Anal Chem 72(1):52–60

    Article  CAS  Google Scholar 

  17. Smith LM (2008) Is charge reduction in ESI really necessary? J Am Soc Mass Spectrom 19(5):629–631. doi:10.1016/j.jasms.2008.02.002

    Article  CAS  Google Scholar 

  18. Ebeling DD, Westphall MS, Scalf M, Smith LM (2000) Corona discharge in charge reduction electrospray mass spectrometry. Anal Chem 72(21):5158–5161

    Article  CAS  Google Scholar 

  19. Pitteri SJ, McLuckey SA (2005) Recent developments in the ion/ion chemistry of high-mass multiply charged ions. Mass Spectrom Rev 24(6):931–958. doi:10.1002/mas.20048

    Article  CAS  Google Scholar 

  20. Zhao Q, Schieffer GM, Soyk MW, Anderson TJ, Houk RS, Badman ER (2010) Effects of ion/ion proton transfer reactions on conformation of gas-phase cytochrome c ions. J Am Soc Mass Spectrom 21(7):1208–1217. doi:10.1016/j.jasms.2010.03.032

    Article  CAS  Google Scholar 

  21. Zhao Q, Soyk MW, Schieffer GM, Fuhrer K, Gonin MM, Houk RS, Badman ER (2009) An ion trap-ion mobility-time of flight mass spectrometer with three ion sources for ion/ion reactions. J Am Soc Mass Spectrom 20(8):1549–1561. doi:10.1016/j.jasms.2009.04.014

    Article  CAS  Google Scholar 

  22. Bagal D, Zhang H, Schnier PD (2008) Gas-phase proton-transfer chemistry coupled with TOF mass spectrometry and ion mobility-MS for the facile analysis of poly(ethylene glycols) and PEGylated polypeptide conjugates. Anal Chem 80(7):2408–2418. doi:10.1021/ac7020163

    Article  CAS  Google Scholar 

  23. Bornschein RE, Hyung SJ, Ruotolo BT (2011) Ion mobility-mass spectrometry reveals conformational changes in charge reduced multiprotein complexes. J Am Soc Mass Spectrom 22(10):1690–1698. doi:10.1007/s13361-011-0204-y

    Article  CAS  Google Scholar 

  24. Catalina MI, van den Heuvel RH, van Duijn E, Heck AJ (2005) Decharging of globular proteins and protein complexes in electrospray. Chemistry 11(3):960–968. doi:10.1002/chem.200400395

    Article  CAS  Google Scholar 

  25. van Duijn E, Barendregt A, Synowsky S, Versluis C, Heck AJ (2009) Chaperonin complexes monitored by ion mobility mass spectrometry. J Am Chem Soc 131(4):1452–1459. doi:10.1021/ja805513410.1021/ja8055134

    Article  Google Scholar 

  26. Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54(4):459–476

    Article  CAS  Google Scholar 

  27. Shi F, Wasungu L, Nomden A, Stuart MC, Polushkin E, Engberts JB, Hoekstra D (2002) Interference of poly(ethylene glycol)-lipid analogues with cationic-lipid-mediated delivery of oligonucleotides; role of lipid exchangeability and non-lamellar transitions. Biochem J 366(Pt 1):333–341. doi:10.1042/BJ20020590BJ20020590

    CAS  Google Scholar 

  28. Mishra S, Webster P, Davis ME (2004) PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 83(3):97–111

    Article  CAS  Google Scholar 

  29. Yu H, Li X, Marchetto GS, Dy R, Hunter D, Calvo B, Dawson TL, Wilm M, Anderegg RJ, Graves LM, Earp HS (1996) Activation of a novel calcium-dependent protein-tyrosine kinase. Correlation with c-Jun N-terminal kinase but not mitogen-activated protein kinase activation. J Biol Chem 271(47):29993–29998

    Article  CAS  Google Scholar 

  30. Monfardini C, Veronese FM (1998) Stabilization of substances in circulation. Bioconjug Chem 9(4):418–450. doi:10.1021/bc970184fbc970184f

    Article  CAS  Google Scholar 

  31. Wyttenbach TvH G, Bowers MT (1996) Gas-phase conformation of biological molecules: Bradykinin. J Am Chem Soc 118:8355–8364

    Article  Google Scholar 

  32. Clemmer DE, Hudgins RR, Jarrold MF (1995) Naked protein conformations: cytochrome c in the gas phase. J Am Chem Soc 117:10141–10142

    Article  CAS  Google Scholar 

  33. Borysik AJ, Robinson CV (2012) The ‘sticky business’ of cleaning gas-phase membrane proteins: a detergent oriented perspective. Phys Chem Chem Phys 14(42):14439–14449. doi:10.1039/c2cp41687e

    Article  CAS  Google Scholar 

  34. Borysik AJ, Robinson CV (2012) Formation and dissociation processes of gas-phase detergent micelles. Langmuir 28(18):7160–7167. doi:10.1021/la3002866

    Article  CAS  Google Scholar 

  35. Leney AC, McMorran LM, Radford SE, Ashcroft AE (2012) Amphipathic polymers enable the study of functional membrane proteins in the gas phase. Anal Chem. doi:10.1021/ac302223s

  36. Hall Z, Politis A, Bush MF, Smith LJ, Robinson CV (2012) Charge-state dependent compaction and dissociation of protein complexes: insights from ion mobility and molecular dynamics. J Am Chem Soc 134(7):3429–3438. doi:10.1021/ja2096859

    Article  CAS  Google Scholar 

  37. Ruotolo BT, Hyung SJ, Robinson PM, Giles K, Bateman RH, Robinson CV (2007) Ion mobility-mass spectrometry reveals long-lived, unfolded intermediates in the dissociation of protein complexes. Angew Chem Int Ed Engl 46(42):8001–8004. doi:10.1002/anie.200702161

    Article  CAS  Google Scholar 

  38. Hopper JT, Rawlings A, Afonso JP, Channing D, Layfield R, Oldham NJ (2012) Evidence for the preservation of native inter- and intra-molecular hydrogen bonds in the desolvated FK-binding protein.FK506 complex produced by electrospray ionization. J Am Soc Mass Spectrom 23(10):1757–1767. doi:10.1007/s13361-012-0430-y

    Article  CAS  Google Scholar 

  39. Pukala TL, Ruotolo BT, Zhou M, Politis A, Stefanescu R, Leary JA, Robinson CV (2009) Subunit architecture of multiprotein assemblies determined using restraints from gas-phase measurements. Structure 17(9):1235–1243. doi:10.1016/j.str.2009.07.013

    Article  CAS  Google Scholar 

  40. Ruotolo BT, Giles K, Campuzano I, Sandercock AM, Bateman RH, Robinson CV (2005) Evidence for macromolecular protein rings in the absence of bulk water. Science 310(5754):1658–1661. doi:10.1126/science.1120177

    Article  CAS  Google Scholar 

  41. Scarff CA, Thalassinos K, Hilton GR, Scrivens JH (2008) Travelling wave ion mobility mass spectrometry studies of protein structure: biological significance and comparison with X-ray crystallography and nuclear magnetic resonance spectroscopy measurements. Rapid Commun Mass Spectrom 22(20):3297–3304. doi:10.1002/rcm.3737

    Article  CAS  Google Scholar 

  42. Wyttenbach T, Bowers MT (2011) Structural stability from solution to the gas phase: native solution structure of ubiquitin survives analysis in a solvent-free ion mobility-mass spectrometry environment. J Phys Chem B 115(42):12266–12275. doi:10.1021/jp206867a

    Article  CAS  Google Scholar 

  43. Smith DP, Knapman TW, Campuzano I, Malham RW, Berryman JT, Radford SE, Ashcroft AE (2009) Deciphering drift time measurements from travelling wave ion mobility spectrometry-mass spectrometry studies. Eur J Mass Spectrom (Chichester, Eng) 15(2):113–130. doi:10.1255/ejms.947

    Article  CAS  Google Scholar 

  44. Campuzano I, Giles K (2011). Nanoproteomics: Methods and Protocols, Methods in Molecular Biology (Eds: Toms SA, Weil R), Humana Press, a part of Springer Science+Business Media, LLC, New York (790):57–70

  45. Tahallah N, Pinkse M, Maier CS, Heck AJ (2001) The effect of the source pressure on the abundance of ions of noncovalent protein assemblies in an electrospray ionization orthogonal time-of-flight instrument. Rapid Commun Mass Spectrom 15(8):596–601. doi:10.1002/rcm.275

    Article  CAS  Google Scholar 

  46. Ruotolo BT, Benesch JL, Sandercock AM, Hyung SJ, Robinson CV (2008) Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc 3(7):1139–1152. doi:10.1038/nprot.2008.78

    Article  CAS  Google Scholar 

  47. Bush MF, Hall Z, Giles K, Hoyes J, Robinson CV, Ruotolo BT (2010) Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal Chem 82(22):9557–9565. doi:10.1021/ac1022953

    Article  CAS  Google Scholar 

  48. Salbo R, Bush MF, Naver H, Campuzano I, Robinson CV, Pettersson I, Jorgensen TJ, Haselmann KF (2012) Traveling-wave ion mobility mass spectrometry of protein complexes: accurate calibrated collision cross-sections of human insulin oligomers. Rapid Commun Mass Spectrom 26(10):1181–1193. doi:10.1002/rcm.6211

    Article  CAS  Google Scholar 

  49. Bush MF, Campuzano IDG, Robinson CV (2012) Ion Mobility Mass Spectrometry of Peptide Ions: Effects of Drift Gas & Calibration Strategies. Anal Chem 84(16):7124–7130. doi:10.1021/ac3014498

  50. Bush MF, Hall Z, Politis A, Barsky D, Robinson CV. Interpreting the Collision Cross Sections of Protein Complexes: Models, Approximations, Errors, and Best Practices. Proc. 59th ASMS Conf. Mass Spectrometry and Applied Topics, 2011, WOB.

  51. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101(26):9528–9533. doi:10.1073/pnas.04027001010402700101

    Article  CAS  Google Scholar 

  52. Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120(13):3265–3266

    Article  CAS  Google Scholar 

  53. Shvartsburg AA, Smith RD (2008) Fundamentals of traveling wave ion mobility spectrometry. Anal Chem 80(24):9689–9699. doi:10.1021/ac8016295

    Article  CAS  Google Scholar 

  54. Giles K, Wildgoose JD, Langridge I, Campuzano I (2010) A method for direct measurement of ion mobilities using a travelling wave ion guide. Int J Mass Spectrom 298:10–16

    Article  CAS  Google Scholar 

  55. Campuzano I, Bush MF, Robinson CV, Beaumont C, Richardson K, Kim H, Kim HI (2012) Structural characterization of drug-like compounds by ion mobility mass spectrometry: comparison of theoretical and experimentally derived nitrogen collision cross sections. Anal Chem 84(2):1026–1033. doi:10.1021/ac202625t

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ed FitzGerald (Amgen) for producing the high quality source photographs displayed in this manuscript. Jeff Brown and Mike Morris (Waters Corporation, MS Technologies Centre, UK) are gratefully acknowledged for their useful discussions during the design and optimization of the electrospray corona discharge probe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain D. G. Campuzano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 457 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campuzano, I.D.G., Schnier, P.D. Coupling electrospray corona discharge, charge reduction and ion mobility mass spectrometry: From peptides to large macromolecular protein complexes. Int. J. Ion Mobil. Spec. 16, 51–60 (2013). https://doi.org/10.1007/s12127-013-0120-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-013-0120-x

Keywords

Navigation