Skip to main content
Log in

Compositional inverses of permutation polynomials of the form xrh(xs) over finite fields

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

The study of computing compositional inverses of permutation polynomials over finite fields efficiently is motivated by an open problem proposed by G. L. Mullen (1991), as well as the potential applications of these permutation polynomials (Dillon 1974, Khachatrian and Kyureghyan, Discrete Appl. Math. 216, 622–626 2017, Lidl 1985, Lidl and Müller 1984, Rivest et al., ACM Commun. Comput. Algebra. 1978, 120–126 1976, Schwenk and Huber, Electron. Lett. 34, 759–760 1998). It is well known that every permutation polynomial over a finite field \(\mathbb {F}_{q}\) can be reduced to a permutation polynomial of the form xrh(xs) with s∣(q − 1) and \(h(x) \in \mathbb {F}_{q}[x]\) (Akbary et al., Finite Fields Appl. 15(2), 195–206 2009, Wang, Finite Fields Appl. 22, 57–69 2013). Recently, several explicit classes of permutation polynomials of the form xrh(xs) over \({\mathbb F}_{q}\) have been constructed. However, all the known methods to compute the compositional inverses of permutation polynomials of this form seem to be inadequately explicit, which could be a hurdle to potential applications. In this paper, for any prime power q, we introduce a new approach to explicitly compute the compositional inverse of a permutation polynomial of the form xrh(xs) over \({\mathbb F}_{q}\), where s∣(q − 1) and \(\gcd (r,q-1)= 1\). The main idea relies on transforming the problem of computing the compositional inverses of permutation polynomials over \({\mathbb F}_{q}\) into computing the compositional inverses of two restricted permutation mappings, where one of them is a monomial over \(\mathbb {F}_{q}\) and the other is the polynomial xrh(x)s over a particular subgroup of \(\mathbb {F}_{q}^{*}\) with order (q − 1)/s. This is a multiplicative analog of Tuxanidy and Wang (Finite Fields Appl. 28, 244–281 2014), Wu and Liu (Finite Fields Appl. 24, 136–147 2013). We demonstrate that the inverses of these two restricted permutations can be explicitly obtained in many cases. As consequences, many explicit compositional inverses of permutation polynomials given in Zieve (Proc. Am. Math. Soc. 137, 2209–2216 2009), Zieve (arXiv:1310.0776, 2013), Zieve (arXiv:1312.1325v3, 2013) are obtained using this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akbary, A., Ghioca, D., Wang, Q.: On permutation polynomials of prescribed shape. Finite Fields Appl. 15(2), 195–206 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akbary, A., Ghioca, D., Wang, Q.: On constructing permutations of finite fields. Finite Fields Appl. 17, 51–67 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akbary, A., Wang, Q.: On polynomials of the form x r h(x (q− 1)/l). Int. J. Math. Math. Sci., Art. ID 23408, 7 (2007)

  4. Charpin, P., Mesnager, S., Sarkar, S.: Involutions over the Galois field \({F}_{2^{n}}\). IEEE Trans. Inform. Theory. 62, 2266–2276 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coulter, R.S., Henderson, M.: The compositional inverse of a class of permutation polynomials over a finite field. Bull. Aust. Math. Soc. 65, 521–526 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dillon, J.F.: Elementary Hadamard difference sets. PhD thesis, University of Maryland (1974)

  7. Hou, X.: Permutation polynomials over finite fields — a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Khachatrian, G., Kyureghyan, M.: Permutation polynomials and a new public-key encryption. Discrete Appl. Math. 216, 622–626 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Laigle-Chapuy, Y.: A note on a class of quadratic permutation polynomials over \({F}_{2^{n}}\). In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, LNCS, vol. 4851, pp 130–137. Springer (2007)

  10. Lidl, R., Niederreiter, H.: Finite Fields, 2nd ed. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  11. Lidl, R., Mullen, G.L., Turnwald, G.: Dickson polynomials, Longman Scientific and Technical (1993)

  12. Lidl, R.: On Cryptosystems Based on Polynomials and Finite Fields. In: Advances in Cryptology—Proceedings of CRYPTO’83, EUROCRYPT ’84 LNCS, vol. 209, pp 10–15. Springer, Berlin (1985)

  13. Lidl, R., Müller, W.B.: Permutation Polynomials in RSA-Cryptosystems. In: Advances in Cryptology, pp 293–301. Plenum Press, New York (1984)

  14. Li, K., Qu, L., Chen, X.: New classes of permutation binomials and permutation trinomials over finite fields. Finite Fields Appl. 43, 69–85 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, K., Qu, L., Chen, X., Li, C.: Permutation polynomials of the form \(cx+ \text {Tr}_{q^{l}/q}\left (x^{a}\right )\) and permutation trinomials over finite fields with even characteristic. Cryptogr. Commun. 10, 531–554 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, N., Helleseth, T.: Several classes of permutation trinomials from Niho exponents. Cryptogr. Commun. 9, 693–705 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, N., Helleseth, T.: New permutation trinomials from Niho exponents over finite fields with even characteristic. arXiv:1606.03768v1 (2016)

  18. Mesnager, S.: Bent Functions: Fundamentals and Results. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  19. Mullen, G.L.: Permutation polynomials over finite fields, Finite Fields, Coding Theory, and Advances in Communication and Computing, Las Vegas, NY, 131–151 (1991)

  20. Muratović-Ribić, A.: A note on the coefficients of inverse polynomials. Finite Fields Appl. 13, 977–980 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Niederreiter, H., Winterhof, A.: Cyclotomic \(\mathscr {R}\)-orthomorprhisms of finite fields. Discrete Math. 295, 161–171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Park, Y.H., Lee, J.B.: Permutation polynomials and group permutation polynomials. Bull. Aust. Math. Soc. 63, 67–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rivest, R.L., Shamir, A., Adelman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. ACM Commun. Comput. Algebra. 21, 120–126 (1978)

    MathSciNet  MATH  Google Scholar 

  24. Schwenk, J., Huber, K.: Public key encryption and digital signatures based on permutation polynomials. Electron. Lett. 34, 759–760 (1998)

    Article  Google Scholar 

  25. Tuxanidy, A., Wang, Q.: On the inverse of some classes of permutations of finite fields. Finite Fields Appl. 28, 244–281 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tuxanidy, A., Wang, Q.: Compositional inverses and complete mappings over finite fields. Discrete Appl. Math. 217, part 2, 318–329 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Q.: Cyclotomic Mapping Permutation Polynomials over Finite Fields. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.) Sequences, Subsequences, and Consequences, In: Lecture Notes in Comput. Sci., vol. 4893, pp 119–128. Springer (2007)

  28. Wang, Q.: On inverse permutation polynomials. Finite Fields Appl. 15, 207–213 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, Q.: Cyclotomy and permutation polynomials of large indices. Finite Fields Appl. 22, 57–69 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Q.: A note on inverses of cyclotomic mapping permutation polynomials over finite fields. Finite Fields Appl. 45, 422–427 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, B., Liu, Z.: Linearized polynomials over finite fields revisited. Finite Fields Appl. 22, 79–100 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu, B., Liu, Z.: The compositional inverse of a class of bilinear permutation polynomials over finite fields of characteristic 2. Finite Fields Appl. 24, 136–147 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, B.: Linearized and Linearized Derived Permutation Polynomials over Finite Fields and Their Compositional Inverses. Ph.D thesis, University of Chinese Academy of Sciences. (in Chinese) (2013)

  34. Wu, B.: The compositional inverses of linearized permutation binomials over finite fields. arXiv:1311.2154v1 (2013)

  35. Wu, B.: The compositional inverse of a class of linearized permutation polynomials over \({F}_{2^{n}}\), n odd. Finite Fields Appl. 29, 34–48 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yuan, P., Ding, C.: Permutation polynomials over finite fields from a powerful lemma. Finite Fields Appl. 17(6), 560–574 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zheng, Y., Yuan, P., Pei, D.: Piecewise constructions of inverses of some permutation polynomials. Finite Fields Appl. 36, 151–169 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zheng, Y., Yu, Y., Pei, D.: Piecewise constructions of inverses of cyclotomic mapping permutations. Finite Fields Appl. 40, 1–9 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zieve, M.E.: On some permutation polynomials over \(\mathbb {F}_{q} \) of the form x r h(x (q− 1)/d). Proc. Am. Math. Soc. 137, 2209–2216 (2009)

    Article  MATH  Google Scholar 

  40. Zieve, M.E.: Permutation polynomials on \(\mathbb {F}_{q}\) induced from bijective Rédei functions on subgroups of the multiplicative group of \(\mathbb {F}_{q}\). arXiv:1310.0776 (2013)

  41. Zieve, M.E.: Permutation polynomials induced from permutations of subfields, and some complete sets of mutually orthogonal latin squares. arXiv:1312.1325v3 (2013)

Download references

Acknowledgments

We would like to thank the editor and the anonymous referees whose valuable comments and suggestions improve both the technical quality and the editorial quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longjiang Qu.

Additional information

The research of Longjiang Qu is partially supported by the National Key R&D Program of China (No. 2017YFB0802000), the Nature Science Foundation of China (NSFC) under Grant 61722213, 11531002, 61572026, 61672530. The research of Qiang Wang is partially supported by NSERC of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Qu, L. & Wang, Q. Compositional inverses of permutation polynomials of the form xrh(xs) over finite fields. Cryptogr. Commun. 11, 279–298 (2019). https://doi.org/10.1007/s12095-018-0292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-018-0292-7

Keywords

Mathematics Subject Classification (2010)

Navigation