Skip to main content

Advertisement

Log in

Investigation of patent foramen ovale as a mechanism for brain metastasis in patients without prior lung involvement

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

The mechanisms of brain metastasis are incompletely understood. Circulating tumor cells travel to the right heart and through the pulmonary circulation, where they may become lung metastases, and can circulate further to the left heart and brain. In patients who develop brain metastases without lung involvement, we hypothesized that cancer cells may travel directly from the right atrium to left atrium via a patent foramen ovale (PFO), akin to paradoxical embolism. If the prevalence of PFO is greater in these individuals compared to the general population (20–30%), PFO may play a role in brain metastasis, and prophylactic closure may provide benefit. Accordingly, we investigated the prevalence of PFO in patients with brain metastases without prior lung involvement.

Methods

We prospectively identified patients with brain metastases from a non-lung primary cancer with no preceding or concurrent lung involvement. Nine eligible participants underwent a transcranial Doppler study with intravenous agitated saline to assess for PFO.

Results

Among nine participants, primary cancers were breast (n = 6), upper gastrointestinal (n = 2), and thyroid (n = 1). A positive bubble study was identified in 2/9 (22.2%) participants: one female with breast cancer and one male with duodenal adenocarcinoma. No participants developed lung metastases on subsequent chest imaging.

Conclusion

In this prospective pilot study, we found a similar prevalence of PFO in patients who developed brain metastases without preceding lung involvement compared to estimates for the general population. Through a larger study is needed, the development of brain metastases in these individuals may primarily reflect tumor-specific biological factors diecting metastasis organotropism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Posner JB, Chernik NL. Intracranial metastases from systemic cancer. Adv Neurol. 1978;19:579–92.

    CAS  PubMed  Google Scholar 

  2. Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973–2001) in the metropolitan detroit cancer surveillance system. J Clin Oncol. 2004;22(14):2865–72. https://doi.org/10.1200/JCO.2004.12.149.

    Article  Google Scholar 

  3. Aronson SM, Garcia JH, Aronson BE. Metastatic neoplasms of the brain: their frequency in relation to age. Cancer. 1964;17(5):558–63. https://doi.org/10.1002/1097-0142(196405)17:5<558:AID-CNCR2820170503>3.0.CO;2-E.

    Article  CAS  PubMed  Google Scholar 

  4. Popper HH. Progression and metastasis of lung cancer. Cancer Metastasis Rev. 2016;35(1):75–91. https://doi.org/10.1007/s10555-016-9618-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sperduto PW, Kased N, Roberge D, et al. Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol. 2012;30(4):419–25. https://doi.org/10.1200/JCO.2011.38.0527.

    Article  PubMed  Google Scholar 

  6. McTyre ER, Johnson AG, Ruiz J, et al. Predictors of neurologic and nonneurologic death in patients with brain metastasis initially treated with upfront stereotactic radiosurgery without whole-brain radiation therapy. Neuro Oncol. 2017;19(4):558–66. https://doi.org/10.1093/neuonc/now184.

    Article  CAS  PubMed  Google Scholar 

  7. Tsukada Y, Fouad A, Pickren JW, Lane WW. Central nervous system metastasis from breast carcinoma autopsy study. Cancer. 1983;52(12):2349–54. https://doi.org/10.1002/1097-0142(19831215)52:12<2349:AID-CNCR2820521231>3.0.CO;2-B.

    Article  CAS  PubMed  Google Scholar 

  8. Neal MT, Chan MD, Lucas JT, et al. Predictors of survival, neurologic death, local failure, and distant failure after gamma knife radiosurgery for melanoma brain metastases. World Neurosurg. 2014;82(6):1250–5. https://doi.org/10.1016/j.wneu.2013.02.025.

    Article  PubMed  Google Scholar 

  9. Fabi A, Felici A, Metro G, et al. Brain metastases from solid tumors: Disease outcome according to type of treatment and therapeutic resources of the treating center. J Exp Clin Cancer Res. 2011;30(1):10. https://doi.org/10.1186/1756-9966-30-10.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Curr Oncol Rep. 2012;14(1):48–544. https://doi.org/10.1007/s11912-011-0203-y.

    Article  PubMed  Google Scholar 

  11. Achrol AS, Rennert RC, Anders C, et al. Brain metastases. Nat Rev Dis Prim. 2019;5(1):1–26. https://doi.org/10.1038/s41572-018-0055-y.

    Article  Google Scholar 

  12. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2(8):563–72. https://doi.org/10.1038/nrc865.

    Article  CAS  PubMed  Google Scholar 

  13. Pestalozzi BC, Zahrieh D, Price KN, et al. Identifying breast cancer patients at risk for central nervous system (CNS) metastases in trials of the international breast cancer study group (IBCSG). Ann Oncol Off J Eur Soc Med Oncol. 2006;17(6):935–44. https://doi.org/10.1093/annonc/mdl064.

    Article  CAS  Google Scholar 

  14. Boogerd W, Vos VW, Hart AA, Baris G. Brain metastases in breast cancer; natural history, prognostic factors and outcome. J Neurooncol. 1993;15(2):165–74. https://doi.org/10.1007/bf01053937.

    Article  CAS  PubMed  Google Scholar 

  15. Rigatelli G, Rossi A, Dell’avvocata F, Cardaioli P (2012) Patent foramen ovale as a preferential mechanism for increasing the likelihood of brain tumor metastasis. Am J Cardiovasc Dis 2(1):29–33. https://www.ncbi.nlm.nih.gov/pubmed/22254211. (Accessed 30 Mar 2020).

  16. Di Tullio M, Sacco RL, Gopal A, Mohr JP, Homma S. Patent foramen ovale as a risk factor for cryptogenic stroke. Ann Intern Med. 1992;117(6):461–5. https://doi.org/10.7326/0003-4819-117-6-461.

    Article  PubMed  Google Scholar 

  17. Handke M, Harloff A, Olschewski M, Hetzel A, Geibel A. Patent foramen ovale and cryptogenic stroke in older patients. N Engl J Med. 2007;357(22):2262–8. https://doi.org/10.1056/NEJMoa071422.

    Article  CAS  PubMed  Google Scholar 

  18. Lechat P, Mas JL, Lascault G, et al. Prevalence of patent foramen ovale in patients with stroke. N Engl J Med. 1988;318(18):1148–52. https://doi.org/10.1056/NEJM198805053181802.

    Article  CAS  PubMed  Google Scholar 

  19. Hagen PT, Scholz DGEW. Incidence and size of patent foramen Ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984;59(1):17–20. https://doi.org/10.1016/S0025-6196(12)60336-X.

    Article  CAS  PubMed  Google Scholar 

  20. Thompson T, Evans W. Paradoxical embolism. Q J Med. 1930;23:135–50. https://doi.org/10.1093/qjmed/os-23.90.135.

    Article  Google Scholar 

  21. Meissner I, Khandheria BK, Heit JA, et al. Patent foramen ovale: Innocent or guilty?: Evidence from a prospective population-based study. J Am Coll Cardiol. 2006;47(2):440–5. https://doi.org/10.1016/j.jacc.2005.10.044.

    Article  PubMed  Google Scholar 

  22. Saver JL, Carroll JD, Thaler DE, et al. Longterm outcomes of patent foramen ovale closure or medical therapy after stroke. N Engl J Med. 2017;377(11):1022–32. https://doi.org/10.1056/NEJMoa1610057.

    Article  PubMed  Google Scholar 

  23. Mas JL, Derumeaux G, Guillon B, et al. Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke. N Engl J Med. 2017;377(11):1011–21. https://doi.org/10.1056/NEJMoa1705915.

    Article  CAS  PubMed  Google Scholar 

  24. Søndergaard L, Kasner SE, Rhodes JF, et al. Patent foramen ovale closure or antiplatelet therapy for cryptogenic stroke. N Engl J Med. 2017;377(11):1033–42. https://doi.org/10.1056/NEJMoa1707404.

    Article  PubMed  Google Scholar 

  25. Mojadidi MK, Roberts SC, Winoker JS, et al. Accuracy of transcranial Doppler for the diagnosis of intracardiac right-to-left shunt: A bivariate meta-analysis of prospective studies. JACC Cardiovasc Imaging. 2014;7(3):236–50. https://doi.org/10.1016/j.jcmg.2013.12.011.

    Article  PubMed  Google Scholar 

  26. Spencer MP, Moehring MA, Jesurum J, Gray WA, Olsen JV, Reisman M. Power m-mode transcranial Doppler for diagnosis of patent foramen ovale and assessing transcatheter closure. J Neuroimaging. 2004;14(4):342–9. https://doi.org/10.1177/1051228404268743.

    Article  PubMed  Google Scholar 

  27. West BH, Noureddin N, Mamzhi Y, et al. Frequency of patent foramen ovale and migraine in patients with cryptogenic stroke. Stroke. 2018;49(5):1123–8. https://doi.org/10.1161/STROKEAHA.117.020160.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mojadidi MK, Bokhoor PI, Gevorgyan R, et al. Sleep apnea in patients with and without a right-to-left shunt. J Clin Sleep Med. 2015;11(11):1299–304. https://doi.org/10.5664/jcsm.5190.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fidler IJ. The role of the organ microenvironment in brain metastasis. Semin Cancer Biol. 2011;21(2):107–12. https://doi.org/10.1016/j.semcancer.2010.12.009.

    Article  PubMed  Google Scholar 

  30. Johung KL, Yeh N, Desai NB, et al. Extended survival and prognostic factors for patients with ALK-rearranged non-small-cell lung cancer and brain metastasis. J Clin Oncol. 2016;34(2):123–9. https://doi.org/10.1200/JCO.2015.62.0138.

    Article  CAS  PubMed  Google Scholar 

  31. Shin D-Y, Na I, Kim CH, Park S, Baek H, Yang SH. EGFR mutation and brain metastasis in pulmonary adenocarcinomas. J Thorac Oncol. 2014;9(2):195–9. https://doi.org/10.1097/JTO.0000000000000069.

    Article  CAS  PubMed  Google Scholar 

  32. Chen G, Chakravarti N, Aardalen K, et al. Molecular profiling of patient-matched brain and extracranial melanoma metastases implicates the PI3K pathway as a therapeutic target. Clin Cancer Res. 2014;20(21):5537–46. https://doi.org/10.1158/1078-0432.CCR-13-3003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Darlix A, Louvel G, Fraisse J, et al. Impact of breast cancer molecular subtypes on the incidence, kinetics and prognosis of central nervous system metastases in a large multicentre real-life cohort. Br J Cancer. 2019;121(12):991–1000. https://doi.org/10.1038/s41416-019-0619-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klotz R, Thomas A, Teng T, et al. Circulating tumor cells exhibit metastatic tropism and reveal brain metastasis drivers. Cancer Discov. 2020;10(1):86–103. https://doi.org/10.1158/2159-8290.CD-19-0384.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the UCLA Specialty Training and Advanced Research (STAR) program for support of this project. The authors would like to thank Dr. James N. Weiss for his support and Islam Abudayyeh for assistance with the anatomical figure.

Funding

This project was funded in part by NIH grant 5T32HL007895-19.

Author information

Authors and Affiliations

Authors

Contributions

Drafting and revision of the manuscript was completed by RLE, PK, JR, RGF, ZM, WK, TBK, BW, and JMT. Data collection was performed by RLE, JR, ZM, PK, and RGF. TCD was performed by PK and RGF. Oversight of the study was performed by JMT, BW, TB, and WK.

Corresponding author

Correspondence to R. Levin-Epstein.

Ethics declarations

Conflict of interest

Jonathan M Tobis: Speakers’ bureau for WL Gore. Rebecca Levin-Epstein, Preetham Kumar, Joshua Rusheen, Rubine Gevorgyan Fleming, Zoe McWatters, Won Kim, Tania B. Kaprealian, and Brian West declare no conflicts of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Institutional Review Board at the University of California, Los Angeles (IRB #10-001634).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent to publication

Not applicable.

Availability of the data and material

All data are included within the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin-Epstein, R., Kumar, P., Rusheen, J. et al. Investigation of patent foramen ovale as a mechanism for brain metastasis in patients without prior lung involvement. Clin Transl Oncol 23, 783–787 (2021). https://doi.org/10.1007/s12094-020-02471-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02471-y

Keywords

Navigation