Skip to main content
Log in

Role of TIM-3 in ovarian cancer

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Evidences have suggested that immunotherapy for ovarian cancer is effective. Immune checkpoints have emerged in the field of cancer immunotherapy. Multiple studies have shown negative regulation of TIM-3 expression on CD4+ and CD8+ T cells and other immunocytes. Overexpression of TIM-3 in innate immune cells has been found in certain types of tumor. The blockade of TIM-3 leads to sustained anti-tumor reactions. TIM-3 plays an inhibitive role for immunity in ovarian cancer. TIM-3 is involved in the development of various subtypes of ovarian cancer and thus has the potential to be a therapeutic target for treatment of ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. Cancer J Clin. 2016. doi:10.3322/caac.21338.

    Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. Cancer J Clin. 2015;65(1):5–29. doi:10.3322/caac.21254.

    Article  Google Scholar 

  3. Houben E, van Haalen HG, Sparreboom W, Overbeek JA, Ezendam NP, Pijnenborg JM, et al. Chemotherapy for ovarian cancer in the Netherlands: a population-based study on treatment patterns and outcomes. Med Oncol. 2017;34(4):50. doi:10.1007/s12032-017-0901-x.

    Article  CAS  PubMed  Google Scholar 

  4. Marchetti C, Pisano C, Facchini G, Bruni GS, Magazzino FP, Losito S, et al. First-line treatment of advanced ovarian cancer: current research and perspectives. Expert Rev Anticancer Ther. 2010;10(1):47–60. doi:10.1586/era.09.167.

    Article  PubMed  Google Scholar 

  5. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. New Eng J Med. 2013;369(2):122–33. doi:10.1056/NEJMoa1302369.

    Article  CAS  PubMed  Google Scholar 

  6. Bour-Jordan H, Esensten JH, Martinez-Llordella M, Penaranda C, Stumpf M, Bluestone JA. Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/B7 family. Immunol Rev. 2011;241(1):180–205. doi:10.1111/j.1600-065X.2011.01011.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. doi:10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11(2):141–51.

    Article  CAS  PubMed  Google Scholar 

  9. da Silva IP, Gallois A, Jimenez-Baranda S, Khan S, Anderson AC, Kuchroo VK, et al. Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade. Cancer Immunol Res. 2014;2(5):410–22. doi:10.1158/2326-6066.CIR-13-0171.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ngiow SF, Teng MW, Smyth MJ. Prospects for TIM3-Targeted Antitumor Immunotherapy. Can Res. 2011;71(21):6567–71. doi:10.1158/0008-5472.CAN-11-1487.

    Article  CAS  Google Scholar 

  11. Wiener Z, Kohalmi B, Pocza P, Jeager J, Tolgyesi G, Toth S, et al. TIM-3 is expressed in melanoma cells and is upregulated in TGF-beta stimulated mast cells. J Invest Dermatol. 2007;127(4):906–14. doi:10.1038/sj.jid.5700616.

    Article  CAS  PubMed  Google Scholar 

  12. Zhuang X, Zhang X, Xia X, Zhang C, Liang X, Gao L, et al. Ectopic expression of TIM-3 in lung cancers: a potential independent prognostic factor for patients with NSCLC. Am J Clin Pathol. 2012;137(6):978–85. doi:10.1309/AJCP9Q6OVLVSHTMY.

    Article  CAS  PubMed  Google Scholar 

  13. Yang X, Jiang X, Chen G, Xiao Y, Geng S, Kang C, et al. T cell Ig mucin-3 promotes homeostasis of sepsis by negatively regulating the TLR response. J Immunol. 2013;190(5):2068–79. doi:10.4049/jimmunol.1202661.

    Article  CAS  PubMed  Google Scholar 

  14. Cao Y, Zhou X, Huang X, Li Q, Gao L, Jiang L, et al. Tim-3 expression in cervical cancer promotes tumor metastasis. PLoS ONE. 2013;8(1):e53834. doi:10.1371/journal.pone.0053834.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C, et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science. 2007;318(5853):1141–3. doi:10.1126/science.1148536.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang J, Jin MS, Kong F, Cao D, Ma HX, Jia Z, et al. Decreased galectin-9 and increased Tim-3 expression are related to poor prognosis in gastric cancer. PLoS ONE. 2013;8(12):e81799. doi:10.1371/journal.pone.0081799.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang ZZ, Grote DM, Ziesmer SC, Niki T, Hirashima M, Novak AJ, et al. IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J Clin Investig. 2012;122(4):1271–82. doi:10.1172/JCI59806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207(10):2187–94. doi:10.1084/jem.20100643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anderson AC. Tim-3, a negative regulator of anti-tumor immunity. Curr Opin Immunol. 2012;24(2):213–6. doi:10.1016/j.coi.2011.12.005.

    Article  CAS  PubMed  Google Scholar 

  20. Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol. 2012;13(9):832–42. doi:10.1038/ni.2376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002;415(6871):536–41. doi:10.1038/415536a.

    Article  CAS  PubMed  Google Scholar 

  22. Ndhlovu LC, Lopez-Verges S, Barbour JD, Jones RB, Jha AR, Long BR, et al. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood. 2012;119(16):3734–43. doi:10.1182/blood-2011-11-392951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Patel J, Bozeman EN, Selvaraj P. Taming dendritic cells with TIM-3: another immunosuppressive strategy used by tumors. Immunotherapy. 2012;4(12):1795–8. doi:10.2217/imt.12.126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sabatos CA, Chakravarti S, Cha E, Schubart A, Sanchez-Fueyo A, Zheng XX, et al. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol. 2003;4(11):1102–10. doi:10.1038/ni988.

    Article  CAS  PubMed  Google Scholar 

  25. Takamura S, Tsuji-Kawahara S, Yagita H, Akiba H, Sakamoto M, Chikaishi T, et al. Premature terminal exhaustion of Friend virus-specific effector CD8+ T cells by rapid induction of multiple inhibitory receptors. J Immunol. 2010;184(9):4696–707. doi:10.4049/jimmunol.0903478.

    Article  CAS  PubMed  Google Scholar 

  26. Gao X, Zhu Y, Li G, Huang H, Zhang G, Wang F, et al. TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS ONE. 2012;7(2):e30676. doi:10.1371/journal.pone.0030676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sakuishi K, Ngiow SF, Sullivan JM, Teng MW, Kuchroo VK, Smyth MJ, et al. TIM3+ FOXP3+ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer. Oncoimmunology. 2013;2(4):e23849.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL, et al. Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol. 2002;168(9):4272–6.

    Article  CAS  PubMed  Google Scholar 

  29. Raimondi G, Shufesky WJ, Tokita D, Morelli AE, Thomson AW. Regulated compartmentalization of programmed cell death-1 discriminates CD4+ CD25+ resting regulatory T cells from activated T cells. J Immunol. 2006;176(5):2808–16.

    Article  CAS  PubMed  Google Scholar 

  30. Afanasiev OK, Yelistratova L, Miller N, Nagase K, Paulson K, Iyer JG, et al. Merkel polyomavirus-specific T cells fluctuate with merkel cell carcinoma burden and express therapeutically targetable PD-1 and Tim-3 exhaustion markers. Clin Cancer Res. 2013;19(19):5351–60. doi:10.1158/1078-0432.CCR-13-0035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bu M, Shen Y, Seeger WL, An S, Qi R, Sanderson JA, et al. Ovarian carcinoma-infiltrating regulatory T cells were more potent suppressors of CD8(+) T cell inflammation than their peripheral counterparts, a function dependent on TIM3 expression. Tumour Biol. 2016;37(3):3949–56. doi:10.1007/s13277-015-4237-x.

    Article  CAS  PubMed  Google Scholar 

  32. Nagahara K, Arikawa T, Oomizu S, Kontani K, Nobumoto A, Tateno H, et al. Galectin-9 increases Tim-3+ dendritic cells and CD8+ T cells and enhances antitumor immunity via galectin-9-Tim-3 interactions. J Immunol. 2008;181(11):7660–9.

    Article  CAS  PubMed  Google Scholar 

  33. Simmons WJ, Koneru M, Mohindru M, Thomas R, Cutro S, Singh P, et al. Tim-3 + T-bet + tumor-specific Th1 cells colocalize with and inhibit development and growth of murine neoplasms. J Immunol. 2005;174(3):1405–15.

    Article  CAS  PubMed  Google Scholar 

  34. Hafler DA, Kuchroo V. TIMs: central regulators of immune responses. J Exp Med. 2008;205(12):2699–701. doi:10.1084/jem.20082429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gupta S, Thornley TB, Gao W, Larocca R, Turka LA, Kuchroo VK, et al. Allograft rejection is restrained by short-lived TIM-3+ PD-1+ Foxp3+ Tregs. J Clin Investig. 2012;122(7):2395–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2010;28:367–88. doi:10.1146/annurev.immunol.021908.132603.

    Article  CAS  PubMed  Google Scholar 

  37. Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, et al. PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. J Clin Investig. 2014;124(5):2246–59. doi:10.1172/JCI73639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12(6):492–9.

    Article  CAS  PubMed  Google Scholar 

  39. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7. doi:10.1038/nature04444.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 2011;117(17):4501–10. doi:10.1182/blood-2010-10-310425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fourcade J, Sun Z, Pagliano O, Guillaume P, Luescher IF, Sander C, et al. CD8(+) T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Can Res. 2012;72(4):887–96. doi:10.1158/0008-5472.CAN-11-2637.

    Article  CAS  Google Scholar 

  42. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010;207(10):2175–86. doi:10.1084/jem.20100637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu JF, Ma SR, Mao L, Bu LL, Yu GT, Li YC, et al. T-cell immunoglobulin mucin 3 blockade drives an antitumor immune response in head and neck cancer. Mol Oncol. 2017;11(2):235–47. doi:10.1002/1878-0261.12029.

    Article  CAS  PubMed  Google Scholar 

  44. Wu J, Liu C, Qian S, Hou H. The expression of Tim-3 in peripheral blood of ovarian cancer. DNA Cell Biol. 2013;32(11):648–53.

    Article  CAS  PubMed  Google Scholar 

  45. Han S, Feng S, Xu L, Shi W, Wang X, Wang H, et al. Tim-3 on peripheral CD4(+) and CD8(+) T cells is involved in the development of glioma. DNA Cell Biol. 2014;33(4):245–50. doi:10.1089/dna.2013.2306.

    Article  CAS  PubMed  Google Scholar 

  46. Tong D, Zhou Y, Chen W, Deng Y, Li L, Jia Z, et al. T cell immunoglobulin- and mucin-domain-containing molecule 3 gene polymorphisms and susceptibility to pancreatic cancer. Mol Biol Rep. 2012;39(11):9941–6. doi:10.1007/s11033-012-1862-y.

    Article  CAS  PubMed  Google Scholar 

  47. Fang L, Lowther DE, Meizlish ML, Anderson RC, Bruce JN, Devine L, et al. The immune cell infiltrate populating meningiomas is composed of mature, antigen-experienced T and B cells. Neuro-oncology. 2013;15(11):1479–90. doi:10.1093/neuonc/not110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu J, Liu C, Qian S, Hou H. The expression of Tim-3 in peripheral blood of ovarian cancer. DNA Cell Biol. 2013;32(11):648–53.

    Article  CAS  PubMed  Google Scholar 

  49. Piao YR, Jin ZH, Yuan KC, Jin XS. Analysis of Tim-3 as a therapeutic target in prostate cancer. Tumour Biol. 2014;35(11):11409–14. doi:10.1007/s13277-014-2464-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goodell V, Salazar LG, Urban N, Drescher CW, Gray H, Swensen RE, et al. Antibody immunity to the p53 oncogenic protein is a prognostic indicator in ovarian cancer. J Clin Oncol. 2006;24(5):762–8. doi:10.1200/JCO.2005.03.2813.

    Article  CAS  PubMed  Google Scholar 

  51. Blasius AL, Beutler B. Intracellular toll-like receptors. Immunity. 2010;32(3):305–15.

    Article  CAS  PubMed  Google Scholar 

  52. Guo Z, Cheng D, Xia Z, Luan M, Wu L, Wang G, et al. Combined TIM-3 blockade and CD137 activation affords the long-term protection in a murine model of ovarian cancer. J Transl Med. 2013;11:215.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Society Development Plans, Department of Science and Technology Changzhou (CJ20159018 to Yun Xu). Besides, we also would like to thank Dr. Xiaofei Zhang and Dr. Xiaodong Li for their help in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This review does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was not applicable in this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, H., Huang, Y. et al. Role of TIM-3 in ovarian cancer. Clin Transl Oncol 19, 1079–1083 (2017). https://doi.org/10.1007/s12094-017-1656-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-017-1656-8

Keywords

Navigation