Skip to main content

Advertisement

Log in

Urinary circulating DNA detection for dynamic tracking of EGFR mutations for NSCLC patients treated with EGFR-TKIs

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Changes in EGFR profiles of non small cell lung cancer (NSCLC) patients correlates to clinical outcome. Extracting quality tumor tissue remains a challenge for molecular profiling. Our study aims to ascertain the clinical relevance of urinary cell free DNA as an alternative tumor material source.

Methods

150 patients with activating EGFR mutation and received EGFR-TKIs were recruited to participate in the serial monitoring study. Matched primary tumor samples were taken together with blood and urine specimens before the initiation of TKIs. The EGFR mutation testing was performed and quantified using ddPCR. For serial time point measurements, urine and blood samples were extracted at 1-month intervals for duration of 9 months.

Results

Urinary ctDNA yielded a close agreement of 88 % on EGFR mutation status when compared to primary tissue at baseline. Almost all samples detected via urine specimens were uncovered in plasma samples. Analysis of urinary cell free DNA at different time points showed a strong correlation to treatment efficacy. Interestingly, a secondary EGFR mutation T790M was detected for 53 % of the patients during monitoring. The results were corroborated with the plasma ctDNA analysis. The T790M+ group had a reduced median survival when compared to the wildtype group.

Conclusion

Urinary cell free DNA may be a potential alternative to conventional primary tissue based EGFR mutation testing. Our findings showed that the assay sensitivity was comparable to results from blood plasma. Urinary samples being noninvasive and readily available have clinical utility for monitoring of EGFR TKI treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500. doi:10.1126/science.1099314.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou C, Wu Y-L, Chen G, Feng J, Liu X-Q, Wang C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12(8):735–42. doi:10.1016/S1470-2045(11)70184-X.

    Article  CAS  PubMed  Google Scholar 

  3. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81. doi:10.1038/nrc2088.

    Article  CAS  PubMed  Google Scholar 

  4. Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Am Assoc Cancer Res. 2013;19(8):2240–7.

    CAS  Google Scholar 

  5. Chouaid C, Dujon C, Do P, Monnet I, Madroszyk A, Le Caer H, et al. Feasibility and clinical impact of re-biopsy in advanced non small-cell lung cancer: a prospective multicenter study in a real-world setting (GFPC study 12-01). Lung Cancer. 2014;86(2):170–3. doi:10.1016/j.lungcan.2014.08.016.

    Article  PubMed  Google Scholar 

  6. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10(8):472–84. doi:10.1038/nrclinonc.2013.110.

    Article  CAS  PubMed  Google Scholar 

  7. Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015;61(1):112–23.

    Article  CAS  PubMed  Google Scholar 

  8. Douillard J-Y, Ostoros G, Cobo M, Ciuleanu T, Cole R, McWalter G, et al. Gefitinib treatment in EGFR mutated caucasian NSCLC: circulating-free tumor DNA as a surrogate for determination of EGFR status. J Thorac Oncol. 2014;9(9):1345–53. doi:10.1097/JTO.0000000000000263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oxnard GR, Paweletz CP, Kuang Y, Mach SL, O’Connell A, Messineo MM, et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res. 2014;20(6):1698–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bai H, Mao L, Wang HS, Zhao J, Yang L, An TT, et al. Epidermal growth factor receptor mutations in plasma dna samples predict tumor response in chinese patients with stages IIIB to IV non-small-cell lung cancer. J Clin Oncol. 2009;27(16):2653–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kimura H, Suminoe M, Kasahara K, Sone T, Araya T, Tamori S, et al. Evaluation of epidermal growth factor receptor mutation status in serum DNA as a predictor of response to gefitinib (IRESSA). Br J Cancer. 2007;97(6):778–84. doi:10.1038/sj.bjc.6603949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Richardson AL, Iglehart JD. BEAMing up personalized medicine: mutation detection in blood. Clin Cancer Res. 2012;18(12):3209–11. doi:10.1158/1078-0432.CCR-12-0871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fischbach FT, Dunning MB. A manual of laboratory and diagnostic tests. Philadelphia: Lippincott Williams & Wilkins; 2009.

    Google Scholar 

  14. Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983;148(3):839–43. doi:10.1148/radiology.148.3.6878708.

    Article  CAS  PubMed  Google Scholar 

  15. Gazdar AF. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009;28(Suppl 1):S24–31. doi:10.1038/onc.2009.198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jekunen AP. Role of rebiopsy in relapsed non-small cell lung cancer for directing oncology treatments. J Oncol. 2015;2015:11. doi:10.1155/2015/809835.

    Article  Google Scholar 

  17. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–990. http://www.nature.com/nm/journal/v14/n9/suppinfo/nm.1789_S1.html.

  18. Szpechcinski A, Chorostowska-Wynimko J, Struniawski R, Kupis W, Rudzinski P, Langfort R, et al. Cell-free DNA levels in plasma of patients with non-small-cell lung cancer and inflammatory lung disease. Br J Cancer. 2015;113(3):476–83. doi:10.1038/bjc.2015.225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37(3):646–50.

    CAS  PubMed  Google Scholar 

  20. Casadio V, Calistri D, Salvi S, Gunelli R, Carretta E, Amadori D, et al. Urine cell-free DNA integrity as a marker for early prostate cancer diagnosis: a pilot study. BioMed Res Int. 2013;2013:5. doi:10.1155/2013/270457.

    Article  Google Scholar 

  21. Utting M, Werner W, Dahse R, Schubert J, Junker K. Microsatellite analysis of free tumor DNA in urine, serum, and plasma of patients. Am Assoc Cancer Res. 2002;8(1):35–40.

    CAS  Google Scholar 

  22. Su Y-H, Wang M, Brenner DE, Norton PA, Block TM. Detection of mutated K-ras DNA in urine, plasma, and serum of patients with colorectal carcinoma or adenomatous polyps. Ann N Y Acad Sci. 2008;1137(1):197–206. doi:10.1196/annals.1448.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39. doi:10.1056/NEJMoa040938.

    Article  CAS  PubMed  Google Scholar 

  24. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2(3):e73. doi:10.1371/journal.pmed.0020073.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liao B-C, Lin C-C. Yang JC-H. Second and third-generation epidermal growth factor receptor tyrosine kinase inhibitors in advanced nonsmall cell lung cancer. Curr Opin Oncol. 2015;27(2):94–101. doi:10.1097/cco.0000000000000164.

    Article  CAS  PubMed  Google Scholar 

  26. Zheng D, Ye X, Zhang MZ, Sun Y, Wang JY, Ni J et al. Plasma EGFR T790M ctDNA status is associated with clinical outcome in advanced NSCLC patients with acquired EGFR-TKI resistance. Sci Rep. 2016;6:20913. doi:10.1038/srep20913. http://www.nature.com/articles/srep20913-supplementary-information.

  27. Chmielecki J, Foo J, Oxnard GR, Hutchinson K, Ohashi K, Somwar R, et al. Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci Transl Med. 2011;3(90):90ra59. doi:10.1126/scitranslmed.3002356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee Y, Lee GK, Lee Y-S, Zhang W, Hwang J-A, Nam B-H, et al. Clinical outcome according to the level of preexisting epidermal growth factor receptor T790M mutation in patients with lung cancer harboring sensitive epidermal growth factor receptor mutations. Cancer. 2014;120(14):2090–8. doi:10.1002/cncr.28711.

    Article  CAS  PubMed  Google Scholar 

  29. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.

    Article  CAS  PubMed  Google Scholar 

  30. Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352(8):786–92. doi:10.1056/NEJMoa044238.

    Article  CAS  PubMed  Google Scholar 

  31. Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008;359(4):366–77. doi:10.1056/NEJMoa0800668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant provided by the Xiangyang Central Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Liu.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

All human and animal studies have been approved by the appropriate ethics committee, and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Additional information

S. Chen and J. Zhao contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Zhao, J., Cui, L. et al. Urinary circulating DNA detection for dynamic tracking of EGFR mutations for NSCLC patients treated with EGFR-TKIs. Clin Transl Oncol 19, 332–340 (2017). https://doi.org/10.1007/s12094-016-1534-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-016-1534-9

Keywords

Navigation