Skip to main content

Advertisement

Log in

The combinational therapy of trastuzumab and cetuximab inhibits tumor growth in a patient-derived tumor xenograft model of gastric cancer

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Gastric cancer (GC) is one of the leading causes of cancer mortality worldwide. Although therapeutic strategies for GC have improved, the prognosis for advanced GC remains poor. Herein, the present study sought to design a personalized cancer therapy specific to a stage III GC patient.

Methods

The tumor was surgically removed and was used to establish a patient-derived tumor xenograft (PDTX) model utilizing nude mice. Various molecular-targeted anticancer treatments were tested in the study, including control (no treatment), bevacizumab, cetuximab, bevacizumab + cetuximab, trastuzumab, and trastuzumab + cetuximab.

Results

Trastuzumab + cetuximab treatment exhibited the best antitumor growth effect, followed by trastuzumab, bevacizumab + cetuximab, cetuximab, and bevacizumab. Similarly, trastuzumab + cetuximab was also the most effective treatment at inducing apoptosis and cell cycle arrest in primary cultures of the patient’s gastric cancer cells. Among all treatments tested in the study, trastuzumab + cetuximab showed the most profound effect in reducing the protein expression of proliferation and metastatic markers (VEGF, MMP-7, EGFT, Ki-67 and, PCNA) in tumors obtained from PDTX models, which may be the mechanism underlying the profound antitumor growth effect exerted by trastuzumab + cetuximab.

Conclusions

The data indicate that trastuzumab + cetuximab combinational therapy should be the most effective antitumor growth therapy for the GC patient whom we took the cancer cells from.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi:10.3322/caac.20107.

    Article  PubMed  Google Scholar 

  2. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97. doi:10.1016/S0140-6736(10)61121-X.

    Article  CAS  PubMed  Google Scholar 

  3. Li J, Qin S, Xu J, Guo W, Xiong J, Bai Y, et al. Apatinib for chemotherapy-refractory advanced metastatic gastric cancer: results from a randomized, placebo-controlled, parallel-arm, phase II trial. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(26):3219–25. doi:10.1200/JCO.2013.48.8585.

    Article  CAS  Google Scholar 

  4. Koukourakis GV, Sotiropoulou-Lontou A. Targeted therapy with bevacizumab (Avastin) for metastatic colorectal cancer. Clin Transl Oncol Off Publ Fed Spanish Oncol Soc Natl Cancer Inst Mexico. 2011;13(10):710–4. doi:10.1007/s12094-011-0720-z.

    CAS  Google Scholar 

  5. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, et al. Paclitaxel–carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355(24):2542–50. doi:10.1056/NEJMoa061884.

    Article  CAS  PubMed  Google Scholar 

  6. Robert NJ, Dieras V, Glaspy J, Brufsky AM, Bondarenko I, Lipatov ON, et al. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(10):1252–60. doi:10.1200/JCO.2010.28.0982.

    Article  CAS  Google Scholar 

  7. Chamberlain MC. Bevacizumab for the treatment of recurrent glioblastoma. Clin Med Insights Oncol. 2011;5:117–29. doi:10.4137/CMO.S7232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370(9605):2103–11. doi:10.1016/S0140-6736(07)61904-7.

    Article  PubMed  Google Scholar 

  9. Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011;365(26):2473–83. doi:10.1056/NEJMoa1104390.

    Article  CAS  PubMed  Google Scholar 

  10. Sennino B, McDonald DM. Controlling escape from angiogenesis inhibitors. Nat Rev Cancer. 2012;12(10):699–709. doi:10.1038/nrc3366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aoyagi K, Kouhuji K, Kizaki J, Isobe T, Hashimoto K, Shirouzu K. Molecular targeting to treat gastric cancer. World J Gastroenterol WJG. 2014;20(38):13741–55. doi:10.3748/wjg.v20.i38.13741.

    Article  CAS  PubMed  Google Scholar 

  12. Pinto C, Di Fabio F, Barone C, Siena S, Falcone A, Cascinu S, et al. Phase II study of cetuximab in combination with cisplatin and docetaxel in patients with untreated advanced gastric or gastro-oesophageal junction adenocarcinoma (DOCETUX study). Br J Cancer. 2009;101(8):1261–8. doi:10.1038/sj.bjc.6605319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lordick F, Luber B, Lorenzen S, Hegewisch-Becker S, Folprecht G, Woll E, et al. Cetuximab plus oxaliplatin/leucovorin/5-fluorouracil in first-line metastatic gastric cancer: a phase II study of the Arbeitsgemeinschaft Internistische Onkologie (AIO). Br J Cancer. 2010;102(3):500–5. doi:10.1038/sj.bjc.6605521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Long ZW, Wang JL, Wang YN. Matrix metalloproteinase-7 mRNA and protein expression in gastric carcinoma: a meta-analysis. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(11):11415–26. doi:10.1007/s13277-014-2441-8.

    Article  CAS  Google Scholar 

  15. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182(3):311–22. doi:10.1002/(SICI)1097-4652(200003)182:3<311:AID-JCP1>3.0.CO;2-9.

    Article  CAS  PubMed  Google Scholar 

  16. Czyzewska J, Guzinska-Ustymowicz K, Lebelt A, Zalewski B, Kemona A. Evaluation of proliferating markers Ki-67, PCNA in gastric cancers. Rocz Akad Med Bialymst. 2004;49(Suppl 1):64–6.

    PubMed  Google Scholar 

  17. Terada R, Yasutake T, Nakamura S, Hisamatsu T, Nakagoe T, Ayabe H, et al. Evaluation of metastatic potential of gastric tumors by staining for proliferating cell nuclear antigen and chromosome 17 numerical aberrations. Ann Surg Oncol. 2001;8(6):525–32.

    Article  CAS  PubMed  Google Scholar 

  18. Zhen Y, Guanghui L, Xiefu Z. Knockdown of EGFR inhibits growth and invasion of gastric cancer cells. Cancer Gene Ther. 2014;21(11):491–7. doi:10.1038/cgt.2014.55.

    Article  CAS  PubMed  Google Scholar 

  19. Malaney P, Nicosia SV, Dave V. One mouse, one patient paradigm: new avatars of personalized cancer therapy. Cancer Lett. 2014;344(1):1–12. doi:10.1016/j.canlet.2013.10.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Daniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL, Rudin CM, et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 2009;69(8):3364–73. doi:10.1158/0008-5472.CAN-08-4210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fichtner I, Rolff J, Soong R, Hoffmann J, Hammer S, Sommer A, et al. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14(20):6456–68. doi:10.1158/1078-0432.CCR-08-0138.

    Article  CAS  Google Scholar 

  22. Rubio-Viqueira B, Jimeno A, Cusatis G, Zhang X, Iacobuzio-Donahue C, Karikari C, et al. An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2006;12(15):4652–61. doi:10.1158/1078-0432.CCR-06-0113.

    Article  CAS  Google Scholar 

  23. Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res Off J Am Assoc Cancer Res. 2007;13(13):3989–98. doi:10.1158/1078-0432.CCR-07-0078.

    Article  CAS  Google Scholar 

  24. Zhu Y, Tian T, Li Z, Tang Z, Wang L, Wu J, et al. Establishment and characterization of patient-derived tumor xenograft using gastroscopic biopsies in gastric cancer. Sci Rep. 2015;5:8542. doi:10.1038/srep08542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Turkoz FP, Solak M, Kilickap S, Ulas A, Esbah O, Oksuzoglu B, et al. Bone metastasis from gastric cancer: the incidence, clinicopathological features, and influence on survival. J Gastric Cancer. 2014;14(3):164–72. doi:10.5230/jgc.2014.14.3.164.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hundahl SA, Phillips JL, Menck HR. The National Cancer Data Base Report on poor survival of U.S. gastric carcinoma patients treated with gastrectomy: fifth edition American Joint Committee on Cancer staging, proximal disease, and the “different disease” hypothesis. Cancer. 2000;88(4):921–32.

    Article  CAS  PubMed  Google Scholar 

  27. Wanebo HJ, Kennedy BJ, Chmiel J, Steele G Jr, Winchester D, Osteen R. Cancer of the stomach. A patient care study by the American College of Surgeons. Ann Surg. 1993;218(5):583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ryu KH, Shim KN, Jung SA, Yoo K, Joo YH, Lee JH. Significance of preoperative tissue levels of vascular-endothelial cadherin, liver–intestine cadherin and vascular endothelial growth factor in gastric cancer. Korean J Gastroenterol Taehan Sohwagi Hakhoe chi. 2012;60(4):229–41.

    Article  PubMed  Google Scholar 

  29. Liu L, Ma XL, Xiao ZL, Li M, Cheng SH, Wei YQ. Prognostic value of vascular endothelial growth factor expression in resected gastric cancer. Asian Pac J Cancer Prev APJCP. 2012;13(7):3089–97.

    Article  PubMed  Google Scholar 

  30. Kawaguchi Y, Kono K, Mimura K, Mitsui F, Sugai H, Akaike H, et al. Targeting EGFR and HER-2 with cetuximab- and trastuzumab-mediated immunotherapy in oesophageal squamous cell carcinoma. Br J Cancer. 2007;97(4):494–501. doi:10.1038/sj.bjc.6603885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Larbouret C, Robert B, Bascoul-Mollevi C, Penault-Llorca F, Ho-Pun-Cheung A, Morisseau S, et al. Combined cetuximab and trastuzumab are superior to gemcitabine in the treatment of human pancreatic carcinoma xenografts. Ann Oncol Off J Eur Soc Med Oncol/ESMO. 2010;21(1):98–103. doi:10.1093/annonc/mdp496.

    Article  CAS  Google Scholar 

  32. Zheng L, Tan W, Zhang J, Yuan D, Yang J, Liu H. Combining trastuzumab and cetuximab combats trastuzumab-resistant gastric cancer by effective inhibition of EGFR/ErbB2 heterodimerization and signaling. Cancer Immunol Immunother CII. 2014;63(6):581–6. doi:10.1007/s00262-014-1541-z.

    Article  CAS  PubMed  Google Scholar 

  33. Wild R, Fager K, Flefleh C, Kan D, Inigo I, Castaneda S, et al. Cetuximab preclinical antitumor activity (monotherapy and combination based) is not predicted by relative total or activated epidermal growth factor receptor tumor expression levels. Mol Cancer Ther. 2006;5(1):104–13. doi:10.1158/1535-7163.MCT-05-0259.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C.J., Tong, P.J. & Zhu, M.Y. The combinational therapy of trastuzumab and cetuximab inhibits tumor growth in a patient-derived tumor xenograft model of gastric cancer. Clin Transl Oncol 18, 507–514 (2016). https://doi.org/10.1007/s12094-015-1397-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-015-1397-5

Keywords

Navigation