Skip to main content

Advertisement

Log in

Tumor-associated macrophages in cancers

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Tumor-associated macrophages (TAMs) are major component of leukocytic infiltrate of tumors and play important roles in progression and regression of tumors. Tumor microenvironment determines the mutual conversion between M1 and M2 macrophages. In many kinds of tumors, M2 type macrophages are of the majority in TAMs and promote tumor progression and metastasis. The dynamic balance and interaction between TAMs and tumor cells have important effects on the occurrence and development of tumor. TAMs in malignant tumors are useful for clinical diagnosis and may provide a novel target for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–37. doi:10.1038/nri3073.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22(2):231–7. doi:10.1016/j.coi.2010.01.009.

    Article  CAS  PubMed  Google Scholar 

  3. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073–81. doi:10.1093/carcin/bgp127.

    Article  CAS  PubMed  Google Scholar 

  4. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–96. doi:10.1038/ni.1937.

    Article  CAS  PubMed  Google Scholar 

  5. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336(6077):86–90. doi:10.1126/science.1219179.

    Article  CAS  PubMed  Google Scholar 

  6. Gomez Perdiguero E, Geissmann F. Myb-independent macrophages: a family of cells that develops with their tissue of residence and is involved in its homeostasis. Cold Spring Harb Symp Quant Biol. 2013;78:91–100. doi:10.1101/sqb.2013.78.020032.

  7. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–95. doi:10.1172/JCI59643.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Zhao H, Zhang X, Chen X, Li Y, Ke Z, Tang T, et al. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE2 and IL-6. Toxicol Appl Pharmacol. 2014;279(3):311–21. doi:10.1016/j.taap.2014.07.001.

    Article  CAS  PubMed  Google Scholar 

  9. Derlindati E, Dei Cas A, Montanini B, Spigoni V, Curella V, Aldigeri R, et al. Transcriptomic analysis of human polarized macrophages: more than one role of alternative activation? PLoS One. 2015;10(3):e0119751. doi:10.1371/journal.pone.0119751.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Fagone P, Di Rosa M, Palumbo M, De Gregorio C, Nicoletti F, Malaguarnera L. Modulation of heat shock proteins during macrophage differentiation. Inflamm Res. 2012;61(10):1131–9. doi:10.1007/s00011-012-0506-y.

    Article  CAS  PubMed  Google Scholar 

  11. Josephs DH, Bax HJ, Karagiannis SN. Tumour-associated macrophage polarisation and re-education with immunotherapy. Front Biosci (Elite Ed). 2015;7:293–308.

    PubMed  Google Scholar 

  12. Mira E, Carmona-Rodriguez L, Tardaguila M, Azcoitia I, Gonzalez-Martin A, Almonacid L, et al. A lovastatin-elicited genetic program inhibits M2 macrophage polarization and enhances T cell infiltration into spontaneous mouse mammary tumors. Oncotarget. 2013;4(12):2288–301.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327(5966):656–61. doi:10.1126/science.1178331.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Li N, Qin J, Lan L, Zhang H, Liu F, Wu Z, et al. PTEN inhibits macrophage polarization from M1 to M2 through CCL2 and VEGF-A reduction and NHERF-1 synergism. Cancer Biol Ther. 2015;16(2):297–306. doi:10.1080/15384047.2014.1002353.

    Article  CAS  PubMed  Google Scholar 

  15. Allavena P, Mantovani A. Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol. 2012;167(2):195–205. doi:10.1111/j.1365-2249.2011.04515.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ohtaki Y, Ishii G, Nagai K, Ashimine S, Kuwata T, Hishida T, et al. Stromal macrophage expressing CD204 is associated with tumor aggressiveness in lung adenocarcinoma. J Thorac Oncol. 2010;5(10):1507–15. doi:10.1097/JTO.0b013e3181eba692.

    Article  PubMed  Google Scholar 

  17. Gao X, Wang X, Yang Q, Zhao X, Wen W, Li G, et al. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. J Immunol. 2015;194(1):438–45. doi:10.4049/jimmunol.1401344.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. 2015;. doi:10.1016/j.brainres.2014.12.045.

    PubMed  Google Scholar 

  19. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86(5):1065–73. doi:10.1189/jlb.0609385.

    Article  CAS  PubMed  Google Scholar 

  20. Hagemann T, Wilson J, Burke F, Kulbe H, Li NF, Pluddemann A, et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J immunol. 2006;176(8):5023–32.

    Article  CAS  PubMed  Google Scholar 

  21. Allavena P, Chieppa M, Bianchi G, Solinas G, Fabbri M, Laskarin G, et al. Engagement of the mannose receptor by tumoral mucins activates an immune suppressive phenotype in human tumor-associated macrophages. Clin Dev Immunol. 2010;2010:547179. doi:10.1155/2010/547179.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Mantovani A, Allavena P. The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med. 2015;. doi:10.1084/jem.20150295.

    Google Scholar 

  23. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51. doi:10.1016/j.cell.2010.03.014.

    Article  CAS  PubMed  Google Scholar 

  24. Jung KY, Cho SW, Kim YA, Kim D, Oh BC, Park DJ, et al. Cancers with higher density of tumor-associated macrophages were associated with poor survival rates. J Pathol Transl Med. 2015;. doi:10.4132/jptm.2015.06.01.

    Google Scholar 

  25. Kang FB, Wang L, Li D, Zhang YG, Sun DX. Hepatocellular carcinomas promote tumor-associated macrophage M2-polarization via increased B7-H3 expression. Oncol Rep. 2015;33(1):274–82. doi:10.3892/or.2014.3587.

    CAS  PubMed  Google Scholar 

  26. Wan S, Zhao E, Kryczek I, Vatan L, Sadovskaya A, Ludema G, et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology. 2014;147(6):1393–404. doi:10.1053/j.gastro.2014.08.039.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kang FB, Wang L, Jia HC, Li D, Li HJ, Zhang YG, et al. B7-H3 promotes aggression and invasion of hepatocellular carcinoma by targeting epithelial-to-mesenchymal transition via JAK2/STAT3/Slug signaling pathway. Cancer Cell Int. 2015;15:45. doi:10.1186/s12935-015-0195-z.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Olmeda D, Jorda M, Peinado H, Fabra A, Cano A. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene. 2007;26(13):1862–74. doi:10.1038/sj.onc.1209997.

    Article  CAS  PubMed  Google Scholar 

  29. Amizadeh M, Shamsadini A, Arabzadeh A, Jazayeri S. Association of cagA positive Helicobacter pylori infection and laryngeal squamous cell carcinoma: a pcr approach. Indian J Otolaryngol Head Neck Surg. 2015;67(Suppl 1):51–5. doi:10.1007/s12070-014-0750-2.

    Article  PubMed  Google Scholar 

  30. Waldum HL, Hauso O, Sordal OF, Fossmark R. Gastrin may mediate the carcinogenic effect of Helicobacter pylori infection of the stomach. Dig Dis Sci. 2014;. doi:10.1007/s10620-014-3468-9.

    PubMed  Google Scholar 

  31. Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345(11):784–9. doi:10.1056/NEJMoa001999.

    Article  CAS  PubMed  Google Scholar 

  32. Quiding-Jarbrink M, Raghavan S, Sundquist M. Enhanced M1 macrophage polarization in human helicobacter pylori-associated atrophic gastritis and in vaccinated mice. PLoS One. 2010;5(11):e15018. doi:10.1371/journal.pone.0015018.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Hu CT, Guo LL, Feng N, Zhang L, Zhou N, Ma LL, et al. MIF, secreted by human hepatic sinusoidal endothelial cells, promotes chemotaxis and outgrowth of colorectal cancer in liver prometastasis. Oncotarget. 2015 [Epub ahead of print].

  34. Ou Y, Kang M, Zhou L, Cheng Z, Tang S, Yu D. Infection with L-form of Helicobacter pylori and expressions of MIF, MMP9 and VEGF in gastric carcinoma. Nan Fang Yi Ke Da Xue Xue Bao. 2014;34(2):180–7.

    CAS  PubMed  Google Scholar 

  35. Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 2014;515(7525):130–3. doi:10.1038/nature13862.

    Article  CAS  PubMed  Google Scholar 

  36. Dokduang H, Techasen A, Namwat N, Khuntikeo N, Pairojkul C, Murakami Y, et al. STATs profiling reveals predominantly-activated STAT3 in cholangiocarcinoma genesis and progression. J Hepato-Biliary-Pancreat Sci. 2014;21(10):767–76. doi:10.1002/jhbp.131.

    Article  Google Scholar 

  37. Zheng D, Wang Y, Cao Q, Lee VW, Zheng G, Sun Y, et al. Transfused macrophages ameliorate pancreatic and renal injury in murine diabetes mellitus. Nephron Exp Nephrol. 2011;118(4):e87–99. doi:10.1159/000321034.

    Article  PubMed  Google Scholar 

  38. Koscso B, Csoka B, Kokai E, Nemeth ZH, Pacher P, Virag L, et al. Adenosine augments IL-10-induced STAT3 signaling in M2c macrophages. J Leukoc Biol. 2013;94(6):1309–15. doi:10.1189/jlb.0113043.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Vlaicu P, Mertins P, Mayr T, Widschwendter P, Ataseven B, Hogel B, et al. Monocytes/macrophages support mammary tumor invasivity by co-secreting lineage-specific EGFR ligands and a STAT3 activator. BMC Cancer. 2013;13:197. doi:10.1186/1471-2407-13-197.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Yang C, He L, He P, Liu Y, Wang W, He Y, et al. Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med Oncol. 2015;32(2):352. doi:10.1007/s12032-014-0352-6.

    Article  PubMed  Google Scholar 

  41. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475(7355):222–5. doi:10.1038/nature10138.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Lu X, Kang Y. Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem. 2009;284(42):29087–96. doi:10.1074/jbc.M109.035899.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Wolf MJ, Hoos A, Bauer J, Boettcher S, Knust M, Weber A, et al. Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell. 2012;22(1):91–105. doi:10.1016/j.ccr.2012.05.023.

    Article  CAS  PubMed  Google Scholar 

  44. Wu M, Shao GR, Zhang FX, Wu WX, Xu P, Ruan ZM. Legumain protein as a potential predictive biomarker for asian patients with breast carcinoma. Asian Pac J Cancer Prev. 2014;15(24):10773–7.

    Article  PubMed  Google Scholar 

  45. D’Costa ZC, Higgins C, Ong CW, Irwin GW, Boyle D, McArt DG, et al. TBX2 represses CST6 resulting in uncontrolled legumain activity to sustain breast cancer proliferation: a novel cancer-selective target pathway with therapeutic opportunities. Oncotarget. 2014;5(6):1609–20.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Luo Y, Zhou H, Krueger J, Kaplan C, Lee SH, Dolman C, et al. Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest. 2006;116(8):2132–41. doi:10.1172/JCI27648.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Hagemann T, Balkwill F, Lawrence T. Inflammation and cancer: a double-edged sword. Cancer Cell. 2007;12(4):300–1. doi:10.1016/j.ccr.2007.10.005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Kee JY, Ito A, Hojo S, Hashimoto I, Igarashi Y, Tsukada K, et al. Chemokine CXCL16 suppresses liver metastasis of colorectal cancer via augmentation of tumor-infiltrating natural killer T cells in a murine model. Oncol Rep. 2013;29(3):975–82. doi:10.3892/or.2012.2185.

    CAS  PubMed  Google Scholar 

  49. Kee JY, Ito A, Hojo S, Hashimoto I, Igarashi Y, Tsuneyama K, et al. CXCL16 suppresses liver metastasis of colorectal cancer by promoting TNF-alpha-induced apoptosis by tumor-associated macrophages. BMC Cancer. 2014;14:949. doi:10.1186/1471-2407-14-949.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Kaler P, Galea V, Augenlicht L, Klampfer L. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells. PLoS One. 2010;5(7):e11700. doi:10.1371/journal.pone.0011700.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Illemann M, Laerum OD, Hasselby JP, Thurison T, Hoyer-Hansen G, Nielsen HJ, et al. Urokinase-type plasminogen activator receptor (uPAR) on tumor-associated macrophages is a marker of poor prognosis in colorectal cancer. Cancer Med. 2014;3(4):855–64. doi:10.1002/cam4.242.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Blok DC, Kager LM, Hoogendijk AJ, Lede IO, Rahman W, Afroz R, et al. Expression of inhibitory regulators of innate immunity in patients with active tuberculosis. BMC Infect Dis. 2015;15(1):98. doi:10.1186/s12879-015-0833-z.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Kim DW, Min HS, Lee KH, Kim YJ, Oh DY, Jeon YK, et al. High tumour islet macrophage infiltration correlates with improved patient survival but not with EGFR mutations, gene copy number or protein expression in resected non-small cell lung cancer. Br J Cancer. 2008;98(6):1118–24. doi:10.1038/sj.bjc.6604256.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Welsh TJ, Green RH, Richardson D, Waller DA, O’Byrne KJ, Bradding P. Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(35):8959–67. doi:10.1200/JCO.2005.01.4910.

    Article  Google Scholar 

  55. Gillard-Bocquet M, Caer C, Cagnard N, Crozet L, Perez M, Fridman WH, et al. Lung tumor microenvironment induces specific gene expression signature in intratumoral NK cells. Front Immunol. 2013;4:19. doi:10.3389/fimmu.2013.00019.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Schmall A, Al-Tamari HM, Herold S, Kampschulte M, Weigert A, Wietelmann A, et al. Macrophage and cancer cell cross-talk via CCR2 and CX3CR1 is a fundamental mechanism driving lung cancer. Am J Respir Crit Care Med. 2015;191(4):437–47. doi:10.1164/rccm.201406-1137OC.

    Article  CAS  PubMed  Google Scholar 

  57. Fritz JM, Tennis MA, Orlicky DJ, Lin H, Ju C, Redente EF, et al. Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Front Immunol. 2014;5:587. doi:10.3389/fimmu.2014.00587.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Shigeoka M, Urakawa N, Nakamura T, Nishio M, Watajima T, Kuroda D, et al. Tumor associated macrophage expressing CD204 is associated with tumor aggressiveness of esophageal squamous cell carcinoma. Cancer Sci. 2013;104(8):1112–9. doi:10.1111/cas.12188.

    Article  CAS  PubMed  Google Scholar 

  59. Shigeoka M, Urakawa N, Nishio M, Takase N, Utsunomiya S, Akiyama H, et al. Cyr61 promotes CD204 expression and the migration of macrophages via MEK/ERK pathway in esophageal squamous cell carcinoma. Cancer Med. 2015;. doi:10.1002/cam4.401.

    PubMed Central  PubMed  Google Scholar 

  60. Chen SJ, Zhang QB, Zeng LJ, Lian GD, Li JJ, Qian CC, et al. Distribution and clinical significance of tumour-associated macrophages in pancreatic ductal adenocarcinoma: a retrospective analysis in China. Curr Oncol. 2015;22(1):e11–9. doi:10.3747/co.22.2150.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Meng F, Li C, Li W, Gao Z, Guo K, Song S. Interaction between pancreatic cancer cells and tumor-associated macrophages promotes the invasion of pancreatic cancer cells and the differentiation and migration of macrophages. IUBMB Life. 2014;66(12):835–46. doi:10.1002/iub.1336.

    Article  CAS  PubMed  Google Scholar 

  62. Karnevi E, Andersson R, Rosendahl AH. Tumour-educated macrophages display a mixed polarisation and enhance pancreatic cancer cell invasion. Immunol Cell Biol. 2014;92(6):543–52. doi:10.1038/icb.2014.22.

    Article  CAS  PubMed  Google Scholar 

  63. Sugimoto M, Mitsunaga S, Yoshikawa K, Kato Y, Gotohda N, Takahashi S, et al. Prognostic impact of M2 macrophages at neural invasion in patients with invasive ductal carcinoma of the pancreas. Eur J Cancer. 2014;50(11):1900–8. doi:10.1016/j.ejca.2014.04.010.

    Article  CAS  PubMed  Google Scholar 

  64. Hermano E, Meirovitz A, Meir K, Nussbaum G, Appelbaum L, Peretz T, et al. Macrophage polarization in pancreatic carcinoma: role of heparanase enzyme. J Natl Cancer Inst. 2014;106(12). doi:10.1093/jnci/dju332.

  65. Hou YC, Chao YJ, Tung HL, Wang HC, Shan YS. Coexpression of CD44-positive/CD133-positive cancer stem cells and CD204-positive tumor-associated macrophages is a predictor of survival in pancreatic ductal adenocarcinoma. Cancer. 2014;120(17):2766–77. doi:10.1002/cncr.28774.

    Article  CAS  PubMed  Google Scholar 

  66. He YF, Zhang MY, Wu X, Sun XJ, Xu T, He QZ, et al. High MUC2 expression in ovarian cancer is inversely associated with the M1/M2 ratio of tumor-associated macrophages and patient survival time. PLoS One. 2013;8(12):e79769. doi:10.1371/journal.pone.0079769.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Armaiz-Pena GN, Gonzalez-Villasana V, Nagaraja AS, Rodriguez-Aguayo C, Sadaoui NC, Stone RL, et al. Adrenergic regulation of monocyte chemotactic protein 1 leads to enhanced macrophage recruitment and ovarian carcinoma growth. Oncotarget. 2014 [Epub ahead of print].

  68. Ko SY, Ladanyi A, Lengyel E, Naora H. Expression of the homeobox gene HOXA9 in ovarian cancer induces peritoneal macrophages to acquire an M2 tumor-promoting phenotype. Am J Pathol. 2014;184(1):271–81. doi:10.1016/j.ajpath.2013.09.017.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Zhang M, He Y, Sun X, Li Q, Wang W, Zhao A, et al. A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J Ovarian Res. 2014;7:19. doi:10.1186/1757-2215-7-19.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Dossett LA, Kudchadkar RR, Zager JS. BRAF and MEK inhibition in melanoma. Expert Opin Drug Saf. 2015;14(4):559–70.

    Article  CAS  PubMed  Google Scholar 

  71. Wang T, Xiao M, Ge Y, Krepler C, Belser E, Lopez-Coral A, et al. BRAF inhibition stimulates melanoma-associated macrophages to drive tumor growth. Clin Cancer Res. 2015;. doi:10.1158/1078-0432.CCR-14-1554.

    Google Scholar 

  72. Tham M, Tan KW, Keeble J, Wang X, Hubert S, Barron L, et al. Melanoma-initiating cells exploit M2 macrophage TGFbeta and arginase pathway for survival and proliferation. Oncotarget. 2014;5(23):12027–42.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Ding H, Cai J, Mao M, Fang Y, Huang Z, Jia J, et al. Tumor-associated macrophages induce lymphangiogenesis in cervical cancer via interaction with tumor cells. APMIS. 2014;122(11):1059–69. doi:10.1111/apm.12257.

    CAS  PubMed  Google Scholar 

  74. Strachan DC, Ruffell B, Oei Y, Bissell MJ, Coussens LM, Pryer N, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8 T cells. Oncoimmunology. 2013;2(12):e26968. doi:10.4161/onci.26968.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Dijkgraaf EM, Heusinkveld M, Tummers B, Vogelpoel LT, Goedemans R, Jha V, et al. Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment. Cancer Res. 2013;73(8):2480–92. doi:10.1158/0008-5472.CAN-12-3542.

    Article  CAS  PubMed  Google Scholar 

  76. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, et al. Macrophage polarization in tumour progression. Semin Cancer Biol. 2008;18(5):349–55. doi:10.1016/j.semcancer.2008.03.004.

    Article  CAS  PubMed  Google Scholar 

  77. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer. 2006;42(6):717–27. doi:10.1016/j.ejca.2006.01.003.

    Article  CAS  PubMed  Google Scholar 

  78. Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP. Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell. 2009;15(5):416–28. doi:10.1016/j.ccr.2009.03.016.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author contributions

The outline was conceived by Drs. Chang-Ping Wu and Jing-Ting Jiang. All authors participated in the preparation of the manuscript and contributed to initial drafts, edited version, and final version. All the authors read and approved the final version before submission.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Jiang or C. Wu.

Ethics declarations

Conflicts of interest

None.

Additional information

W. Hu and X. Li are the co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Li, X., Zhang, C. et al. Tumor-associated macrophages in cancers. Clin Transl Oncol 18, 251–258 (2016). https://doi.org/10.1007/s12094-015-1373-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-015-1373-0

Keywords

Navigation