Skip to main content

Advertisement

Log in

Selection of a novel DNA thioaptamer against HER2 structure

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Human epithelial growth factor receptor 2 (HER2) is over-expressed in several malignancies and represents an important therapeutic target. Aptamers are oligonucleotides that may potentially serve as tumor-homing ligand with excellent affinity and specificity for targeted cancer therapy. However, aptamers need to have nuclease resistance in order to function in vivo. The aim of this study was to generate a novel HER2 thioaptamer with enhanced nuclease resistance.

Methods

The HER2 thioaptamer is selected in an evolutionary process called systematic evolution of ligands by exponential enrichment.

Results

The thioaptamer could bind to the extracellular domain of HER2 with a K d of 172 nM and had minimal cross reactivity to trypsin or IgG. Moreover, the thioaptamer was found capable of binding with the HER2-positive breast cancer cells SK-BR-3 and MDA-MB-453, but not the HER2-negative cells MDA-MB-231. Notably, the thioaptamer HY6 largely maintained its structural integrity facing the nucleases in serum, while regular DNA aptamers were mostly digested. Additionally, the thioaptamer retained the capability of binding with the HER2-positive cells in the presence of serum, whereas non-thionated HER2 aptamer lost the binding function.

Conclusion

The results indicated that the selected thioaptamer was more resistant to nuclease than regular DNA aptamers and might potentially function as a HER2-targeting ligand in complicated environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37. doi:10.1038/35052073.

    Article  CAS  PubMed  Google Scholar 

  2. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    Article  CAS  PubMed  Google Scholar 

  3. Tateishi M, Ishida T, Mitsudomi T, Kaneko S, Sugimachi K. Prognostic value of c-erbB-2 protein expression in human lung adenocarcinoma and squamous cell carcinoma. Eur J Cancer. 1991;27(11):1372–5.

    Article  CAS  PubMed  Google Scholar 

  4. Lemoine NR, Jain S, Silvestre F, Lopes C, Hughes CM, McLelland E, et al. Amplification and overexpression of the EGF receptor and c-erbB-2 proto-oncogenes in human stomach cancer. Br J Cancer. 1991;64(1):79–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hu Y, Bandla S, Godfrey TE, Tan D, Luketich JD, Pennathur A, et al. HER2 amplification, overexpression and score criteria in esophageal adenocarcinoma. Mod Pathol. 2011;24(7):899–907. doi:10.1038/modpathol.2011.47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999;17(9):2639–48.

    CAS  PubMed  Google Scholar 

  7. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–10.

    Article  CAS  PubMed  Google Scholar 

  8. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22. doi:10.1038/346818a0.

    Article  CAS  PubMed  Google Scholar 

  9. Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosens Bioelectron. 2005;20(12):2424–34. doi:10.1016/j.bios.2004.11.006.

    Article  CAS  PubMed  Google Scholar 

  10. Soontornworajit B, Wang Y. Nucleic acid aptamers for clinical diagnosis: cell detection and molecular imaging. Anal Bioanal Chem. 2011;399(4):1591–9. doi:10.1007/s00216-010-4559-x.

    Article  CAS  PubMed  Google Scholar 

  11. Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, et al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol. 2009;27(9):839–49. doi:10.1038/nbt.1560.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA. 2006;103(16):6315–20. doi:10.1073/pnas.0601755103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hu Y, Duan J, Zhan Q, Wang F, Lu X, Yang XD. Novel MUC1 aptamer selectively delivers cytotoxic agent to cancer cells in vitro. PLoS One. 2012;7(2):e31970. doi:10.1371/journal.pone.0031970.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Yang X, Wang H, Beasley DW, Volk DE, Zhao X, Luxon BA, et al. Selection of thioaptamers for diagnostics and therapeutics. Ann NY Acad Sci. 2006;1082:116–9. doi:10.1196/annals.1348.065.

    Article  CAS  PubMed  Google Scholar 

  15. Davis KA, Abrams B, Lin Y, Jayasena SD. Use of a high affinity DNA ligand in flow cytometry. Nucleic Acids Res. 1996;24(4):702–6. doi:10.1093/nar/24.4.702.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA. 2006;103(32):11838–43. doi:10.1073/pnas.0602615103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Dakappagari NK, Douglas DB, Triozzi PL, Stevens VC, Kaumaya PT. Prevention of mammary tumors with a chimeric HER-2 B-cell epitope peptide vaccine. Cancer Res. 2000;60(14):3782–9.

    CAS  PubMed  Google Scholar 

  18. Liu Z, Duan JH, Song YM, Ma J, Wang FD, Lu X, et al. Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med. 2012;10:148. doi:10.1186/1479-5876-10-148.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Zhao Q, Li XF, Le XC. Aptamer-modified monolithic capillary chromatography for protein separation and detection. Anal Chem. 2008;80(10):3915–20. doi:10.1021/ac702567x.

    Article  CAS  PubMed  Google Scholar 

  20. Bridonneau P, Chang YF, O’Connell D, Gill SC, Snyder DW, Johnson L, et al. High-affinity aptamers selectively inhibit human nonpancreatic secretory phospholipase A2 (hnps-PLA2). J Med Chem. 1998;41(6):778–86. doi:10.1021/jm970579k.

    Article  CAS  PubMed  Google Scholar 

  21. Lewis GD, Figari I, Fendly B, Wong WL, Carter P, Gorman C, et al. Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer Immunol Immunother. 1993;37(4):255–63.

    Article  CAS  PubMed  Google Scholar 

  22. Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol. 1989;9(3):1165–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Tang Z, Shangguan D, Wang K, Shi H, Sefah K, Mallikratchy P, et al. Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem. 2007;79(13):4900–7. doi:10.1021/ac070189y.

    Article  CAS  PubMed  Google Scholar 

  24. Yoshino I, Goedegebuure PS, Peoples GE, Parikh AS, DiMaio JM, Lyerly HK et al. HER2/neu-derived peptides are shared antigens among human non-small cell lung cancer and ovarian cancer. Cancer Res. 1994;54(13):3387–90.

    Google Scholar 

  25. Brabender J, Danenberg KD, Metzger R, Schneider PM, Park J, Salonga D, et al. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer is correlated with survival. Clin Cancer Res. 2001;7(7):1850–5.

    CAS  PubMed  Google Scholar 

  26. Coombs LM, Pigott DA, Sweeney E, Proctor AJ, Eydmann ME, Parkinson C, et al. Amplification and over-expression of c-erbB-2 in transitional cell carcinoma of the urinary bladder. Br J Cancer. 1991;63(4):601–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Famulok M, Hartig JS, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev. 2007;107(9):3715–43. doi:10.1021/cr0306743.

    Article  CAS  PubMed  Google Scholar 

  28. Vester B, Wengel J. LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry. 2004;43(42):13233–41. doi:10.1021/bi0485732.

    Article  CAS  PubMed  Google Scholar 

  29. Lin Y, Nieuwlandt D, Magallanez A, Feistner B, Jayasena SD. High-affinity and specific recognition of human thyroid stimulating hormone (hTSH) by in vitro-selected 2′-amino-modified RNA. Nucleic Acids Res. 1996;24(17):3407–14. doi:10.1093/nar/24.17.3407.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Burmeister PE, Lewis SD, Silva RF, Preiss JR, Horwitz LR, Pendergrast PS, et al. Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem Biol. 2005;12(1):25–33. doi:10.1016/j.chembiol.2004.10.017.

    Article  CAS  PubMed  Google Scholar 

  31. Boomer RM, Lewis SD, Healy JM, Kurz M, Wilson C, McCauley TG. Conjugation to polyethylene glycol polymer promotes aptamer biodistribution to healthy and inflamed tissues. Oligonucleotides. 2005;15(3):183–95. doi:10.1089/oli.2005.15.183.

    Article  CAS  PubMed  Google Scholar 

  32. de Smidt PC, Le Doan T, de Falco S, van Berkel TJ. Association of antisense oligonucleotides with lipoproteins prolongs the plasma half-life and modifies the tissue distribution. Nucleic Acids Res. 1991;19(17):4695–700.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Somasunderam A, Ferguson MR, Rojo DR, Thiviyanathan V, Li X, O’Brien WA, et al. Combinatorial selection, inhibition, and antiviral activity of DNA thioaptamers targeting the RNase H domain of HIV-1 reverse transcriptase. Biochemistry. 2005;44(30):10388–95. doi:10.1021/bi0507074.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. King DJ, Bassett SE, Li X, Fennewald SA, Herzog NK, Luxon BA, et al. Combinatorial selection and binding of phosphorothioate aptamers targeting human NF-kappa B RelA(p65) and p50. Biochemistry. 2002;41(30):9696–706. doi:10.1021/bi020220k.

    Article  CAS  PubMed  Google Scholar 

  35. Gallo M, Montserrat JM, Iribarren AM. Design and applications of modified oligonucleotides. Braz J Med Biol Res. 2003;36(2):143–51. doi:10.1590/S0100-879X2003000200001.

    Article  CAS  PubMed  Google Scholar 

  36. Kim MY, Jeong S. In vitro selection of RNA aptamer and specific targeting of ErbB2 in breast cancer cells. Nucleic Acid Ther. 2011;21(3):173–8. doi:10.1089/nat.2011.0283.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Dastjerdi K, Tabar GH, Dehghani H, Haghparast A. Generation of an enriched pool of DNA aptamers for an HER2-overexpressing cell line selected by Cell SELEX. Biotechnol Appl Biochem. 2011;58(4):226–30. doi:10.1002/bab.36.

    Article  CAS  PubMed  Google Scholar 

  38. Oh SS, Qian J, Lou X, Zhang Y, Xiao Y, Soh HT. Generation of highly specific aptamers via micromagnetic selection. Anal Chem. 2009;81(13):5490–5. doi:10.1021/ac900759k.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the funding support from the Chinese Ministry of Science and Technology (2011CB933504, 2011CB911003), and the 111 project from the Chinese Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Wang or X.-D. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Duan, J., Cao, B. et al. Selection of a novel DNA thioaptamer against HER2 structure. Clin Transl Oncol 17, 647–656 (2015). https://doi.org/10.1007/s12094-015-1292-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-015-1292-0

Keywords

Navigation