Skip to main content

Advertisement

Log in

Hypoxia and Serum deprivation protected MiaPaCa-2 cells from KAI1-induced proliferation inhibition through autophagy pathway activation in solid tumors

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

KAI1 closely correlates with pancreatic cancer metastasis. There might be some factors that protect the cells from a proliferation inhibition by KAI1 in the solid tumors’ microenvironment. Hypoxia and ischemia are the main characteristics of the microenvironment within solid tumors. Whether they affect the KAI1 inhibitory effects on cell proliferation is still unclear.

Methods

MiaPaCa-2 human pancreatic cancer cells do not express KAI1 protein. However, after being infected with Ad5-KAI1, they expressed KAI1 protein. We cultured them under hypoxic and serum-free conditions to simulate the solid tumor hypoxic-ischemic microenvironment. The cells were divided into the control, hypoxic, serum-free, and hypoxic with serum-free groups. The proliferation and apoptosis were observed by CCK8 and Annexin V-FITC/PI, respectively. The green fluorescent protein-labeled light chain 3 association with autophagosome membranes was detected by confocal microscopy. The ratio of LC3-II–LC3-I expression level was detected by western blot. Pretreatment of 3-MA was used to inhibit the autophagy. We, then observed whether the hypoxic and serum-free conditions could change the effect of KAI1 on cell survival and whether the pretreatment of 3-MA could inhibit the effect of hypoxic and serum-free conditions on KAI1 function.

Results

Hypoxia and serum-free media effectively reduced the apoptosis and proliferation inhibition caused by KAI1 and was beneficial to the cell survival. 3-MA pretreatment effectively blocked the protective effect of hypoxia and serum-free media on the cells by autophagy block.

Conclusions

Serum-free media and hypoxia protected the MiaPaCa-2 cells from a KAI1-induced apoptosis and proliferation inhibition via autophagy induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, et al. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science. 1995;268(5212):884–6.

    Article  CAS  PubMed  Google Scholar 

  2. Guo X, Friess H, Graber HU, Kashiwagi M, Zimmermann A, Korc M, et al. KAI1 expression is up-regulated in early pancreatic cancer and decreased in the presence of metastases. Cancer Res. 1996;56(21):4876–80.

    CAS  PubMed  Google Scholar 

  3. Friess H, Guo XZ, Berberat P, Graber HU, Zimmermann A, Korc M, et al. Reduced KAI1 expression in pancreatic cancer is associated with lymph node and distant metastases. Int J Cancer. 1998;79(4):349–55.

    Article  CAS  PubMed  Google Scholar 

  4. Liu WM, Zhang XA. KAI1/CD82, a tumor metastasis suppressor. Cancer Lett. 2006;240(2):183–94. doi:10.1016/j.canlet.2005.08.018.

    Article  CAS  PubMed  Google Scholar 

  5. Xu JH, Guo XZ, Ren LN, Shao LC, Liu MP. KAI1 is a potential target for anti-metastasis in pancreatic cancer cells. World J Gastroenterol. 2008;14(7):1126–32.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Fujii S, Mitsunaga S, Yamazaki M, Hasebe T, Ishii G, Kojima M, et al. Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome. Cancer Sci. 2008;99(9):1813–9. doi:10.1111/j.1349-7006.2008.00893.x.

    CAS  PubMed  Google Scholar 

  7. Kim B, Boo K, Lee JS, Kim KI, Kim WH, Cho HJ, et al. Identification of the KAI1 metastasis suppressor gene as a hypoxia target gene. Biochem Biophys Res Commun. 2010;393(1):179–84. doi:10.1016/j.bbrc.2010.01.118.

    Article  CAS  PubMed  Google Scholar 

  8. Alva AS, Gultekin SH, Baehrecke EH. Autophagy in human tumors: cell survival or death? Cell Death Differ. 2004;11(9):1046–8. doi:10.1038/sj.cdd.4401445.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang WW, Guo XZ, Wang LS, Lu ZZ, Tian H, Zhang QW, et al. Construction of a replication-deficiency recombinant adenovirus vector expressing KAI1 and study of its tumor suppressive effect in vitro. Chin J Pancreatol. 2006;6(3):131–4.

    CAS  Google Scholar 

  10. Kanzawa T, Zhang L, Xiao L, Germano IM, Kondo Y, Kondo S. Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene. 2005;24(6):980–91.

    Article  CAS  PubMed  Google Scholar 

  11. Thomlinson RH. An experimental method for comparing treatments of intact malignant tumours in animals and its application to the use of oxygen in radiotherapy. Br J Cancer. 1960;14:555–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ardyanto TD, Osaki M, Tokuyasu N, Nagahama Y, Ito H. CoCl2-induced HIF-1alpha expression correlates with proliferation and apoptosis in MKN-1 cells: a possible role for the PI3 K/Akt pathway. Int J Oncol. 2006;29(3):549–55.

    CAS  PubMed  Google Scholar 

  13. Covello KL, Simon MC, Keith B. Targeted replacement of hypoxia-inducible factor-1alpha by a hypoxia-inducible factor-2alpha knock-in allele promotes tumor growth. Cancer Res. 2005;65(6):2277–86. doi:10.1158/0008-5472.CAN-04-3246.

    Article  CAS  PubMed  Google Scholar 

  14. Luo F, Liu X, Yan N, Li S, Cao G, Cheng Q, et al. Hypoxia-inducible transcription factor-1alpha promotes hypoxia-induced A549 apoptosis via a mechanism that involves the glycolysis pathway. BMC Cancer. 2006;6:26. doi:10.1186/1471-2407-6-26.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kunz M, Ibrahim SM. Molecular responses to hypoxia in tumor cells. Mol Cancer. 2003;2:23.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Wouters BG, Koritzinsky M, Chiu RK, Theys J, Buijsen J, Lambin P. Modulation of cell death in the tumor microenvironment. Semin Radiat Oncol. 2003;13(1):31–41. doi:10.1053/srao.2003.50004.

    Article  PubMed  Google Scholar 

  17. Bottaro DP, Liotta LA. Cancer: out of air is not out of action. Nature. 2003;423(6940):593–5. doi:10.1038/423593a.

    Article  CAS  PubMed  Google Scholar 

  18. Escuin D, Simons JW, Giannakakou P. Exploitation of the HIF axis for cancer therapy. Cancer Biol Ther. 2004;3(7):608–11.

    Article  CAS  PubMed  Google Scholar 

  19. Cairns RA, Kalliomaki T, Hill RP. Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res. 2001;61(24):8903–8.

    CAS  PubMed  Google Scholar 

  20. Semenza GL. Intratumoral hypoxia, radiation resistance, and HIF-1. Cancer Cell. 2004;5(5):405–6.

    Article  CAS  PubMed  Google Scholar 

  21. Brown JM. Tumor hypoxia in cancer therapy. Methods Enzymol. 2007;435:297–321. doi:10.1016/S0076-6879(07)35015-5.

    CAS  PubMed  Google Scholar 

  22. Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 2005;5(9):726–34. doi:10.1038/nrc1692.

    Article  CAS  PubMed  Google Scholar 

  23. Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science. 2004;306(5698):990–5. doi:10.1126/science.1099993.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer. 2007;7(12):961–7. doi:10.1038/nrc2254.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Debnath J, Baehrecke EH, Kroemer G. Does autophagy contribute to cell death? Autophagy. 2005;1(2):66–74.

    Article  CAS  PubMed  Google Scholar 

  26. Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA. 1982;79(6):1889–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10892–903. doi:10.1074/jbc.M800102200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10(1):51–64. doi:10.1016/j.ccr.2006.06.001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Pua HH, Dzhagalov I, Chuck M, Mizushima N, He YW. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med. 2007;204(1):25–31. doi:10.1084/jem.20061303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Phillips KK, Welch DR, Miele ME, Lee JH, Wei LL, Weissman BE. Suppression of MDA-MB-435 breast carcinoma cell metastasis following the introduction of human chromosome 11. Cancer Res. 1996;56(6):1222–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by Nature Science foundation of China (No. 81071982).

Conflict of interest

All authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Z. Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C.Y., Guo, X.Z. & Li, H.Y. Hypoxia and Serum deprivation protected MiaPaCa-2 cells from KAI1-induced proliferation inhibition through autophagy pathway activation in solid tumors. Clin Transl Oncol 17, 201–208 (2015). https://doi.org/10.1007/s12094-014-1211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-014-1211-9

Keywords

Navigation