Skip to main content

Advertisement

Log in

Nanoemulsions and nanoparticles for non-melanoma skin cancer: effects of lipid materials

  • Educational Series – Blue Series
  • Advances in Translational Oncology
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Basal cell carcinomas and squamous cell carcinomas are non-melanoma skin cancers reported to be among the most common malignancies, being responsible for high human morbidity. Conventional chemotherapy applied to these conditions shows non-specific targeting, thus severe adverse side effects are also commonly reported. New therapeutic strategies based on nanoparticulates technology have emerged as alternatives for site specific chemotherapy. Among the different types of nanoparticulates, lipid nanoemulsions and nanoparticles have several advantages for topical delivery of poorly soluble chemotherapeutics. These particles show sustained drug release and protection of loaded drugs from chemical degradation. This technology is promising to enhance the intracellular concentration of drugs and consequently reduce the cytotoxicity of skin chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W et al (2011) Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 63(6):470–491

    Article  PubMed  CAS  Google Scholar 

  2. Garduno-Ramirez ML, Clares B, Dominguez-Villegas V, Peraire C, Ruiz MA, Garcia ML et al (2012) Skin permeation of cacalol, cacalone and 6-epi-cacalone sesquiterpenes from a nanoemulsion. Nat Prod Commun 7(7):821–823

    PubMed  CAS  Google Scholar 

  3. Chen Y, Wu Q, Zhang Z, Yuan L, Liu X, Zhou L (2012) Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules 17(5):5972–5987

    Article  PubMed  CAS  Google Scholar 

  4. Chen YC, Liu DZ, Liu JJ, Chang TW, Ho HO, Sheu MT (2012) Development of terbinafine solid lipid nanoparticles as a topical delivery system. Int J Nanomedicine 7:4409–4418

    PubMed  CAS  Google Scholar 

  5. Desai P, Patlolla RR, Singh M (2011) Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol 27(7):247–259

    Article  Google Scholar 

  6. Chen Y, Zhou L, Yuan L, Zhang ZH, Liu X, Wu Q (2012) Formulation, characterization, and evaluation of in vitro skin permeation and in vivo pharmacodynamics of surface-charged tripterine-loaded nanostructured lipid carriers. Int J Nanomed 7:3023–3033

    CAS  Google Scholar 

  7. Gupta M, Vyas SP (2012) Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chem Phys Lipids 165(4):454–461

    Google Scholar 

  8. Estella-Hermoso de Mendoza A, Campanero MA, Mollinedo F, Blanco-Prieto MJ (2009) Lipid nanomedicines for anticancer drug therapy. J Biomed Nanotechnol 5(4):323–343

    Article  PubMed  CAS  Google Scholar 

  9. Pawar KR, Babu RJ (2010) Polymeric and lipid-based materials for topical nanoparticle delivery systems. Crit Rev Ther Drug Carrier Syst 27(5):419–459

    Article  PubMed  CAS  Google Scholar 

  10. de Leeuw J, de Vijlder HC, Bjerring P, Neumann HA (2009) Liposomes in dermatology today. J Eur Acad Dermatol Venereol 23(5):505–516

    Article  PubMed  Google Scholar 

  11. Pardeike J, Hommoss A, Muller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366(1–2):170–184

    Article  PubMed  CAS  Google Scholar 

  12. Souto EB, Muller RH (2008) Cosmetic features and applications of lipid nanoparticles (SLN, NLC). Int J Cosmet Sci 30(3):157–165

    Article  PubMed  CAS  Google Scholar 

  13. Roy SD, Gutierrez M, Flynn GL, Cleary GW (1996) Controlled transdermal delivery of fentanyl: characterizations of pressure-sensitive adhesives for matrix patch design. J Pharm Sci 85(5):491–495

    Article  PubMed  CAS  Google Scholar 

  14. Lee SH, Jeong SK, Ahn SK (2006) An update of the defensive barrier function of skin. Yonsei Med J 47(3):293–306

    Article  PubMed  CAS  Google Scholar 

  15. Schittek B (2011) The antimicrobial skin barrier in patients with atopic dermatitis. Curr Probl Dermatol 41:54–67

    Article  PubMed  CAS  Google Scholar 

  16. Baroli B (2009) Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? J Pharm Sci 99(1):21–50

    Article  Google Scholar 

  17. Passeron T, Ortonne JP (2003) Skin ageing and its prevention. Presse Med 32(31):1474–1482

    PubMed  Google Scholar 

  18. Kristl J, Teskac K, Grabnar PA (2010) Current view on nanosized solid lipid carriers for drug delivery to the skin. J Biomed Nanotechnol 6(5):529–542

    Article  PubMed  CAS  Google Scholar 

  19. Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M (2003) Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res 42(1):1–36

    Article  PubMed  CAS  Google Scholar 

  20. Cheng KW, Mattheolabakis G, Wong CC, Ouyang N, Huang L, Constantinides PP et al (2012) Topical phospho-sulindac (OXT-328) is effective in the treatment of non-melanoma skin cancer. Int J Oncol (in press)

  21. Grant WB (2012) On the roles of solar UV irradiance and smoking on the diagnosis of second cancers after diagnosis of melanoma. Dermatoendocrinol 4(1):12–17

    Article  PubMed  CAS  Google Scholar 

  22. Pfeifer GP, Besaratinia A (2011) UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem Photobiol Sci 11(1):90–97

    Article  PubMed  Google Scholar 

  23. Andrade P, Brites MM, Vieira R, Mariano A, Reis JP, Tellechea O et al (2012) Epidemiology of basal cell carcinomas and squamous cell carcinomas in a Department of Dermatology: a 5 year review. An Bras Dermatol 87(2):212–219

    Article  PubMed  Google Scholar 

  24. Clarke P (2012) Nonmelanoma skin cancers—treatment options. Aust Fam Physician 41(7):476–480

    PubMed  CAS  Google Scholar 

  25. Samarasinghe V, Madan V (2012) Nonmelanoma skin cancer. J Cutan Aesthet Surg 5(1):3–10

    Article  PubMed  Google Scholar 

  26. Grachtchouk M, Pero J, Yang SH, Ermilov AN, Michael LE, Wang A et al (2011) Basal cell carcinomas in mice arise from hair follicle stem cells and multiple epithelial progenitor populations. J Clin Invest 121(5):1768–1781

    Article  PubMed  CAS  Google Scholar 

  27. Chinem VP, Miot HA (2011) Epidemiology of basal cell carcinoma. An Bras Dermatol 86(2):292–305

    Article  PubMed  Google Scholar 

  28. Florence ME, Massuda JY, Brocker EB, Metze K, Cintra ML, Souza EM (2011) Angiogenesis in the progression of cutaneous squamous cell carcinoma: an immunohistochemical study of endothelial markers. Clinics (Sao Paulo) 66(3):465–468

    Article  Google Scholar 

  29. Samarasinghe V, Madan V, Lear JT (2011) Management of high-risk squamous cell carcinoma of the skin. Expert Rev Anticancer Ther 11(5):763–769

    Article  PubMed  Google Scholar 

  30. Maddodi N, Setaluri V (2008) Role of UV in cutaneous melanoma. Photochem Photobiol 84(2):528–536

    Article  PubMed  CAS  Google Scholar 

  31. Kruger K, Blume-Peytavi U, Orfanos CE (1999) Basal cell carcinoma possibly originates from the outer root sheath and/or the bulge region of the vellus hair follicle. Arch Dermatol Res 291(5):253–259

    Article  PubMed  CAS  Google Scholar 

  32. Patel RV, Frankel A, Goldenberg G (2011) An update on nonmelanoma skin cancer. J Clin Aesthet Dermatol 4(2):20–27

    PubMed  Google Scholar 

  33. Alimoglu Y, Kilic E, Mercan H, Inci E (2011) Metastatic basal cell carcinoma. J Craniofac Surg 22(3):1134–1136

    Article  PubMed  Google Scholar 

  34. Panelos J, Tarantini F, Paglierani M, Di Serio C, Maio V, Pellerito S et al (2008) Photoexposition discriminates Notch 1 expression in human cutaneous squamous cell carcinoma. Mod Pathol 21(3):316–325

    Article  PubMed  CAS  Google Scholar 

  35. Bolshakov S, Walker CM, Strom SS, Selvan MS, Clayman GL, El-Naggar A et al (2003) p53 mutations in human aggressive and nonaggressive basal and squamous cell carcinomas. Clin Cancer Res 9(1):228–234

    PubMed  CAS  Google Scholar 

  36. Renzi C, Mastroeni S, Mannooranparampil TJ, Passarelli F, Caggiati A, Potenza C et al (2010) Delay in diagnosis and treatment of squamous cell carcinoma of the skin. Acta Derm Venereol 90(6):595–601

    Article  PubMed  Google Scholar 

  37. Yanofsky VR, Mercer SE, Phelps RG (2011) Histopathological variants of cutaneous squamous cell carcinoma: a review. J Skin Cancer 2011:210813

    PubMed  Google Scholar 

  38. Sidoroff A, Thaler P (2010) Taking treatment decisions in non-melanoma skin cancer—the place for topical photodynamic therapy (PDT). Photodiagn Photodyn Ther 7(1):24–32

    Article  CAS  Google Scholar 

  39. Lien MH, Sondak VK (2011) Nonsurgical treatment options for basal cell carcinoma. J Skin Cancer 2011:571734

    PubMed  Google Scholar 

  40. O’Bryan KW, Ratner D (2011) The role of targeted molecular inhibitors in the management of advanced nonmelanoma skin cancer. Semin Cutan Med Surg 30(1):57–61

    Article  PubMed  Google Scholar 

  41. Ackroyd R, Kelty C, Brown N, Reed M (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74(5):656–669

    Article  PubMed  CAS  Google Scholar 

  42. Weinstock MA, Bingham SF, Digiovanna JJ, Rizzo AE, Marcolivio K, Hall R et al (2012) Tretinoin and the prevention of keratinocyte carcinoma (Basal and squamous cell carcinoma of the skin): a veterans affairs randomized chemoprevention trial. J Invest Dermatol 132(6):1583–1590

    Article  PubMed  CAS  Google Scholar 

  43. Chen TM, Rosen T, Orengo I (2002) Treatment of a large superficial basal cell carcinoma with 5% imiquimod: a case report and review of the literature. Dermatol Surg 28(4):344–346

    Article  PubMed  CAS  Google Scholar 

  44. Wu PA, Stern RS (2012) Topical tretinoin, another failure in the pursuit of practical chemoprevention for non-melanoma skin cancer. J Investig Dermatol 132(6):1532–1535

    Article  PubMed  CAS  Google Scholar 

  45. Osiecka B, Jurczyszyn K, Symonowicz K, Bronowicz A, Ostasiewicz P, Czapinska E et al (2010) In vitro and in vivo matrix metalloproteinase expression after photodynamic therapy with a liposomal formulation of aminolevulinic acid and its methyl ester. Cell Mol Biol Lett 15(4):630–650

    Article  PubMed  CAS  Google Scholar 

  46. Barolet D, Boucher A (2011) No-needle jet intradermal aminolevulinic Acid photodynamic therapy for recurrent nodular Basal cell carcinoma of the nose: a case report. J Skin Cancer 2011:790509

    PubMed  Google Scholar 

  47. Jefford M, Kiffer JD, Somers G, Daniel FJ, Davis ID (2004) Metastatic basal cell carcinoma: rapid symptomatic response to cisplatin and paclitaxel. ANZ J Surg 74(8):704–705

    Article  PubMed  Google Scholar 

  48. Teskac K, Kristl J (2010) The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int J Pharm 390(1):61–69

    Article  PubMed  CAS  Google Scholar 

  49. Shi G, Rao L, Yu H, Xiang H, Yang H, Ji R (2008) Stabilization and encapsulation of photosensitive resveratrol within yeast cell. Int J Pharm 349(1–2):83–93

    Article  PubMed  CAS  Google Scholar 

  50. Rigel DS, Torres AM, Ely H (2008) Imiquimod 5% cream following curettage without electrodesiccation for basal cell carcinoma: preliminary report. J Drugs Dermatol 7(1 Suppl 1):s15–s16

    PubMed  Google Scholar 

  51. Dragicevic-Curic N, Winter S, Krajisnik D, Stupar M, Milic J, Graefe S et al (2010) Stability evaluation of temoporfin-loaded liposomal gels for topical application. J Liposome Res 20(1):38–48

    Article  PubMed  CAS  Google Scholar 

  52. Henkin RI (2012) Vismodegib in advanced basal-cell carcinoma. N Engl J Med 367(10):969–971

    Article  Google Scholar 

  53. Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD et al (2012) Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med 366(23):2171–2179

    Article  PubMed  CAS  Google Scholar 

  54. Amini S, Viera MH, Valins W, Berman B (2010) Nonsurgical innovations in the treatment of nonmelanoma skin cancer. J Clin Aesthet Dermatol 3(6):20–34

    Google Scholar 

  55. Smith V, Walton S (2011) Treatment of facial basal cell carcinoma: a review. J Skin Cancer 2011:380371

    PubMed  Google Scholar 

  56. Lambert T, Mullinax K, Smith J (2006) A case of an adverse reaction to topical 5-fluorouracil in irradiated skin. J Drugs Dermatol 5(3):282–283

    PubMed  Google Scholar 

  57. Hosmer JM, Shin SH, Nornoo A, Zheng H, Lopes LB (2010) Influence of internal structure and composition of liquid crystalline phases on topical delivery of paclitaxel. J Pharm Sci (in press)

  58. Paolino D, Celia C, Trapasso E, Cilurzo F, Fresta M (2012) Paclitaxel-loaded ethosomes(R): potential treatment of squamous cell carcinoma, a malignant transformation of actinic keratoses. Eur J Pharm Biopharm 81(1):102–112

    Article  PubMed  CAS  Google Scholar 

  59. Ndiaye M, Philippe C, Mukhtar H, Ahmad N (2011) The grape antioxidant resveratrol for skin disorders: promise, prospects, and challenges. Arch Biochem Biophys 508(2):164–170

    Article  PubMed  CAS  Google Scholar 

  60. Roy P, Kalra N, Prasad S, George J, Shukla Y (2009) Chemopreventive potential of resveratrol in mouse skin tumors through regulation of mitochondrial and PI3K/AKT signaling pathways. Pharm Res 26(1):211–217

    Article  PubMed  CAS  Google Scholar 

  61. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220

    Article  PubMed  CAS  Google Scholar 

  62. Stanley MA (2002) Imiquimod and the imidazoquinolones: mechanism of action and therapeutic potential. Clin Exp Dermatol 27(7):571–577

    Article  PubMed  CAS  Google Scholar 

  63. Amaria RN, Bowles DW, Lewis KD, Jimeno A (2012) Vismodegib in basal cell carcinoma. Drugs Today (Barc) 48(7):459–467

    CAS  Google Scholar 

  64. Dirix L, Rutten A (2012) Vismodegib: a promising drug in the treatment of basal cell carcinomas. Future Oncol 8(8):915–928

    Article  PubMed  CAS  Google Scholar 

  65. Paszko E, Ehrhardt C, Senge MO, Kelleher DP, Reynolds JV (2011) Nanodrug applications in photodynamic therapy. Photodiagn Photodyn Ther 8(1):14–29

    Article  CAS  Google Scholar 

  66. Durbec M, Cosmidis A, Fuchsmann C, Ramade A, Ceruse P (2012) Efficacy and safety of photodynamic therapy with temoporfin in curative treatment of recurrent carcinoma of the oral cavity and oropharynx. Eur Arch Otorhinolaryngol (in press)

  67. Bechet D, Couleaud P, Frochot C, Viriot ML, Guillemin F, Barberi-Heyob M (2008) Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol 26(11):612–621

    Article  PubMed  CAS  Google Scholar 

  68. Krishnan G, Roberts MS, Grice J, Anissimov YG, Benson HA (2010) Enhanced transdermal delivery of 5-aminolevulinic acid and a dipeptide by iontophoresis. Biopolymers 96(2):166–171

    Article  Google Scholar 

  69. Lee Y, Baron ED (2011) Photodynamic therapy: current evidence and applications in dermatology. Semin Cutan Med Surg 30(4):199–209

    Article  PubMed  CAS  Google Scholar 

  70. Tran MA, Watts RJ, Robertson GP (2009) Use of liposomes as drug delivery vehicles for treatment of melanoma. Pigment Cell Melanoma Res 22(4):388–399

    Article  PubMed  CAS  Google Scholar 

  71. Goutayer M, Dufort S, Josserand V, Royere A, Heinrich E, Vinet F et al (2010) Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging. Eur J Pharm Biopharm 75(2):137–147

    Article  PubMed  CAS  Google Scholar 

  72. Morgillo F, Lee HY (2005) Resistance to epidermal growth factor receptor-targeted therapy. Drug Resist Updat 8(5):298–310

    Article  PubMed  CAS  Google Scholar 

  73. Cho KJ, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316

    Article  PubMed  CAS  Google Scholar 

  74. Kairemo K, Erba P, BergströK J, Pauwels EKJ (2008) Nanoparticles in cancer. Curr Radiopharm 1:30–36

    Article  CAS  Google Scholar 

  75. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Google Scholar 

  76. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007) Variables influencing interactions of untargeted quantum dot nanoparticles with skin cells and identification of biochemical modulators. Nano Lett 7(5):1344–1348

    Article  PubMed  CAS  Google Scholar 

  77. Verma DD, Verma S, Blume G, Fahr A (2003) Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm 258(1–2):141–151

    Article  PubMed  CAS  Google Scholar 

  78. Marie-Alexandrine B, Stephanie B, Yves C (2011) Nanoparticles through the skin: managing conflicting results of inorganic and organic particles in cosmetics and pharmaceutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol (in press)

  79. Hia J, Nasir A (2011) Photonanodermatology: the interface of photobiology, dermatology and nanotechnology. Photodermatol Photoimmunol Photomed 27(1):2–9

    Article  PubMed  CAS  Google Scholar 

  80. Kogan A, Garti N (2006) Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci 123–126:369–385

    Article  PubMed  Google Scholar 

  81. Spernath A, Aserin A (2006) Microemulsions as carriers for drugs and nutraceuticals. Adv Colloid Interface Sci 128–130:47–64

    Article  PubMed  Google Scholar 

  82. Anton N, Vandamme TF (2010) Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res 28(5):978–985

    Article  PubMed  Google Scholar 

  83. Araujo FA, Kelmann RG, Araujo BV, Finatto RB, Teixeira HF, Koester LS (2010) Development and characterization of parenteral nanoemulsions containing thalidomide. Eur J Pharm Sci 42(3):238–245

    Article  PubMed  Google Scholar 

  84. Tagne JB, Kakumanu S, Nicolosi RJ (2008) Nanoemulsion preparations of the anticancer drug dacarbazine significantly increase its efficacy in a xenograft mouse melanoma model. Mol Pharm 5(6):1055–1063

    Article  PubMed  CAS  Google Scholar 

  85. Shakeel F, Ramadan W (2010) Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloids Surf B Biointerfaces 75(1):356–362

    Article  PubMed  CAS  Google Scholar 

  86. Araujo LM, Thomazine JA, Lopez RF (2010) Development of microemulsions to topically deliver 5-aminolevulinic acid in photodynamic therapy. Eur J Pharm Biopharm 75(1):48–55

    Article  PubMed  Google Scholar 

  87. Lin C–C, Lin H-Y, Chen H-C, Yu M-W, Lee M-H (2009) Stability and characterisation of phospholipid-based curcumin-encapsulated microemulsions. Food Chem 116(4):923–928

    Article  CAS  Google Scholar 

  88. Liu CH, Chang FY, Hung DK (2011) Terpene microemulsions for transdermal curcumin delivery: effects of terpenes and cosurfactants. Colloids Surf B Biointerfaces 82(1):63–70

    Article  PubMed  CAS  Google Scholar 

  89. Kakumanu S, Tagne JB, Wilson TA, Nicolosi RJ (2011) A nanoemulsion formulation of dacarbazine reduces tumor size in a xenograft mouse epidermoid carcinoma model compared to dacarbazine suspension. Nanomedicine 7(3):277–283

    Article  PubMed  CAS  Google Scholar 

  90. Kristl J, Teskac K, Milek M, Mlinaric-Rascan I (2008) Surface active stabilizer tyloxapol in colloidal dispersions exerts cytostatic effects and apoptotic dismissal of cells. Toxicol Appl Pharmacol 232(2):218–225

    Article  PubMed  CAS  Google Scholar 

  91. Schafer-Korting M, Mehnert W, Korting HC (2007) Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 59(6):427–443

    Article  PubMed  Google Scholar 

  92. Singhal GB, Patel RP, Prajapati BG, Patel NA (2011) Solid lipid nanoparticles and nano lipid carriers: as novel solid lipid based drug carrier. Int Res J Pharm 2(2):20–52

    Google Scholar 

  93. Mudshinge SR, Deore AB, Patil S, Bhalgat CM (2011) Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J 19(3):129–141

    Article  CAS  Google Scholar 

  94. Nikolic S, Keck CM, Anselmi C, Müller RH (2011) Skin photoprotection improvement: synergistic interaction between lipid nanoparticles and organic UV filters. Int J Pharm 414(1–2):276–284

    Article  PubMed  CAS  Google Scholar 

  95. Mandawgade SD, Patravale VB (2008) Development of SLNs from natural lipids: application to topical delivery of tretinoin. Int J Pharm 363(1–2):132–138

    Article  PubMed  CAS  Google Scholar 

  96. Shah KA, Date AA, Joshi MD, Patravale VB (2007) Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int J Pharm 345(1–2):163–171

    Article  PubMed  CAS  Google Scholar 

  97. Abdel-Mottaleb MMA, Neumann D, Lamprecht A (2011) Lipid nanocapsules for dermal application: a comparative study of lipid-based versus polymer-based nanocarriers. Eur J Pharm Biopharm (In Press, Corrected Proof)

  98. David S, Carmoy N, Resnier P, Denis C, Misery L, Pitard B et al (2011) In vivo imaging of DNA lipid nanocapsules after systemic administration in a melanoma mouse model. Int J Pharm 423(1):108–115

    Article  PubMed  Google Scholar 

  99. Weiss MB, Aplin AE (2010) Paying “particle” attention to novel melanoma treatment strategies. J Invest Dermatol 130(12):2699–2701

    Article  PubMed  CAS  Google Scholar 

  100. Huynh NT, Passirani C, Saulnier P, Benoit JP (2009) Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm 379(2):201–209

    Article  PubMed  CAS  Google Scholar 

  101. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2002) A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 19(6):875–880

    Article  PubMed  CAS  Google Scholar 

  102. Ourique AF, Melero A, de Bona da Silva C, Schaefer UF, Pohlmann AR, Guterres SS et al (2011) Improved photostability and reduced skin permeation of tretinoin: development of a semisolid nanomedicine. Eur J Pharm Biopharm 79(1):95–101

    Google Scholar 

Download references

Acknowledgments

Dr. Patrícia Severino, Dr. Maria Helena A. Santana and Dr. Marco V. Chaud wish to acknowledge the sponsorship of the CAPES (Coordenação Aperfeiçoamento de Pessoal de Nível Superior) and FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo). The authors wish to acknowledge Fundação para a Ciência e Tecnologia do Ministério da Ciência e Tecnologia, under the reference ERA-Eula/0002/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Souto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Severino, P., Fangueiro, J.F., Ferreira, S.V. et al. Nanoemulsions and nanoparticles for non-melanoma skin cancer: effects of lipid materials. Clin Transl Oncol 15, 417–424 (2013). https://doi.org/10.1007/s12094-012-0982-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-012-0982-0

Keywords

Navigation