Skip to main content

Advertisement

Log in

CD44+/CD24 breast cancer cells isolated from MCF-7 cultures exhibit enhanced angiogenic properties

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Recent studies suggest that the relationship between cancer stem cells (CSCs) and the vascular niche may be bidirectional; the niche can support the growth and renewal of CSCs, and CSCs may contribute to the maintenance of the niche. There is little knowledge concerning the role of breast cancer stem cells in promoting tumor angiogenesis.

Aim

For human breast cancers, CSCs have been shown to be associated with a CD44+/CD24 phenotype. We investigated the potential activities of CD44+/CD24 breast cancer stem cells in promoting tumor angiogenesis.

Methods

The expression of pro-angiogenic genes was determined by quantitative real-time RT-PCR. Endothelial cell migration assays were employed to evaluate effects of conditioned media from CD44+/CD24 on human umbilical vein endothelial cells. A chorioallantoic membrane (CAM) assay was used to study the potential of CD44+/CD24 cells to promote angiogenesis.

Results

In our study, CD44+/CD24 cells expressed elevated levels of pro-angiogenic factors compared with CD44+/CD24+ cells. CD44+/CD24 cell-conditioned media significantly increased endothelial cell migration. Breast cancer cell lines enriched with CD44+/CD24 cells were more pro-angiogenic in the CAM assay than those lacking a CD44+/CD24 subpopulation. CD44+/CD24 cells sorted from MCF-7 cell lines were more pro-angiogenic in a CAM assay than CD44+/CD24+ cells. Furthermore, the VEGF concentration was significantly higher in CD44+/CD24 cell-conditioned media than in CD44+/CD24+ cell-conditioned media. The pro-angiogenic effect of CD44+/CD24 cells on endothelial cells was abolished by bevacizumab.

Conclusion

Our findings demonstrate that CD44+/CD24 breast cancer stem cells have substantial pro-angiogenic potential and activity. This provides new insights to explore in the development of targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CSCs:

Cancer stem cells

HUVECs:

Human umbilical vein endothelial cells

FCS:

Fetal calf serum

PBS:

Phosphate-buffered saline

CAM:

Chorioallantoic membrane

References

  1. Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82

    Article  PubMed  CAS  Google Scholar 

  2. Beck B, Driessens G, Goossens S et al (2011) A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478(7369):399–403

    Article  PubMed  CAS  Google Scholar 

  3. Shen R, Ye Y, Chen L et al (2008) Precancerous stem cells can serve as tumor vasculogenic progenitors. PloS One 3(2):e1652

    Article  PubMed  Google Scholar 

  4. Wang R, Chadalavada K, Wilshire J et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468(7325):829–833

    Article  PubMed  CAS  Google Scholar 

  5. Sneddon JB, Werb Z (2007) Location, location, location: the cancer stem cell niche. Cell Stem Cell 1(6):607–611

    Article  PubMed  CAS  Google Scholar 

  6. Bao S, Wu Q, Sathornsumetee S et al (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66(16):7843–7848

    Article  PubMed  CAS  Google Scholar 

  7. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  PubMed  CAS  Google Scholar 

  8. Gong JF, Yuan YH, Song GH et al (2008) Pilot study on the correlation between high incidence of CD44+/CD24/low/ABCG2-cells and poor prognosis in breast cancer. Beijing Da Xue Xue Bao 40(5):465–470

    Google Scholar 

  9. Abraham BK, Fritz P, McClellan M et al (2005) Prevalence of CD44+/CD24/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11(3):1154–1159

    PubMed  CAS  Google Scholar 

  10. Liu R, Wang X, Chen GY et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. New Engl J Med 356(3):217–226

    Article  PubMed  CAS  Google Scholar 

  11. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Google Scholar 

  12. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nature Rev 5(4):275–284

    Article  CAS  Google Scholar 

  13. Okabe M, Tsukahara Y, Tanaka M et al (2009) Potential hepatic stem cells reside in EpCAM+ cells of normal and injured mouse liver. Development 136(11):1951–1960

    Google Scholar 

  14. Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567

    Article  PubMed  CAS  Google Scholar 

  15. Croker AK, Goodale D, Chu J et al (2009) High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med 13(8B):2236–2252

    Article  PubMed  Google Scholar 

  16. Charafe-Jauffret E, Ginestier C, Monville F et al (2006) Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 25(15):2273–2284

    Article  PubMed  CAS  Google Scholar 

  17. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    Article  PubMed  CAS  Google Scholar 

  18. Ailles LE, Weissman IL (2007) Cancer stem cells in solid tumors. Curr Opin Biotechnol 18(5):460–466

    Article  PubMed  CAS  Google Scholar 

  19. Ponti D, Costa A, Zaffaroni N et al (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65(13):5506–5511

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Y, Toy KA, Kleer CG (2012) Metaplastic breast carcinomas are enriched in markers of tumor-initiating cells and epithelial to mesenchymal transition. Mod Pathol 25(2):178–184

    PubMed  CAS  Google Scholar 

  21. Ratajczak M, Tarnowski M, Staniszewska M et al (2010) Mechanisms of cancer metastasis: involvement of cancer stem cells? Minerva Med 101(3):179–191

    PubMed  CAS  Google Scholar 

  22. Arima Y, Hayashi N, Hayashi H et al (2012) Loss of p16 expression is associated with the stem cell characteristics of surface markers and therapeutic resistance in estrogen receptor-negative breast cancer. Int J Cancer 130(11):2568–2579

    Article  PubMed  CAS  Google Scholar 

  23. Idowu MO, Kmieciak M, Dumur C et al (2012) CD44(+)/CD24(/low) cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome. Hum Pathol 43(3):364–373

    Article  PubMed  CAS  Google Scholar 

  24. Sheridan C, Kishimoto H, Fuchs RK et al (2006) CD44+/CD24 breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8(5):R59

    Article  PubMed  Google Scholar 

  25. Saarinen NM, Abrahamsson A, Dabrosin C (2010) Estrogen-induced angiogenic factors derived from stromal and cancer cells are differently regulated by enterolactone and genistein in human breast cancer in vivo. Int J Cancer 127(3):737–745

    Article  PubMed  CAS  Google Scholar 

  26. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev 9(4):239–252

    Article  CAS  Google Scholar 

  27. Ambasta RK, Sharma A, Kumar P (2011) Nanoparticle mediated targeting of VEGFR and cancer stem cells for cancer therapy. Vasc Cell 3(1):26

    Article  PubMed  CAS  Google Scholar 

  28. Liekens S, Schols D, Hatse S (2011) CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Curr Pharm Des 16(35):3903–3920

    Article  Google Scholar 

  29. Ehtesham M, Mapara KY, Stevenson CB et al (2009) CXCR4 mediates the proliferation of glioblastoma progenitor cells. Cancer Lett 274(2):305–312

    Article  PubMed  CAS  Google Scholar 

  30. Sakariassen PO, Prestegarden L, Wang J et al (2006) Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc Natl Acad Sci USA 103(44):16466–16471

    Article  PubMed  CAS  Google Scholar 

  31. Jeyapalan Z, Deng Z, Shatseva T et al (2011) Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids Res 39(8):3026–3041

    Article  PubMed  CAS  Google Scholar 

  32. Bretz N, Noske A, Keller S et al (2011) CD24 promotes tumor cell invasion by suppressing tissue factor pathway inhibitor-2 (TFPI-2) in a c-Src-dependent fashion. Clin Exp Metastasis 29(1):27–38

    Google Scholar 

  33. Schabath H, Runz S, Joumaa S et al (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119(Pt 2):314–325

    Article  PubMed  CAS  Google Scholar 

  34. Kerbel RS (2008) Tumor angiogenesis. New Engl J Med 358(19):2039–2049

    Article  PubMed  CAS  Google Scholar 

  35. Kim KJ, Li B, Winer J et al (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362(6423):841–844

    Article  PubMed  CAS  Google Scholar 

  36. Relf M, LeJeune S, Scott PA et al (1997) Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 57(5):963–969

    PubMed  CAS  Google Scholar 

  37. Hanrahan V, Currie MJ, Gunningham SP et al (2003) The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression. J Pathol 200(2):183–194

    Article  PubMed  CAS  Google Scholar 

  38. Viacava P, Naccarato AG, Bocci G et al (2004) Angiogenesis and VEGF expression in pre-invasive lesions of the human breast. J Pathol 204(2):140–146

    Article  PubMed  CAS  Google Scholar 

  39. Bergers G, Javaherian K, Lo KM et al (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284(5415):808–812

    Google Scholar 

  40. Hamilton EP, Blackwell KL (2011) Safety of bevacizumab in patients with metastatic breast cancer. Oncology 80(5–6):314–325

    Article  PubMed  CAS  Google Scholar 

  41. Besancon R, Valsesia-Wittmann S, Puisieux A et al (2009) Cancer stem cells: the emerging challenge of drug targeting. Curr Med Chem 16(4):394–416

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hongxia Li (Department of Medical Oncology, Beijing Youan Hospital, Capital Medical University, Beijing, China) for constructive advices on the manuscript. This work was supported by Beijing Medical Oncology Leadership grant 2009-2-16 from Beijing Municipal Government Health Bureau.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Jia, J., Wang, X. et al. CD44+/CD24 breast cancer cells isolated from MCF-7 cultures exhibit enhanced angiogenic properties. Clin Transl Oncol 15, 46–54 (2013). https://doi.org/10.1007/s12094-012-0891-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-012-0891-2

Keywords

Navigation