Skip to main content

Advertisement

Log in

Molecular biology of myeloma

  • Educational Series
  • Blue Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) is a B-cell malignancy characterised by the accumulation of clonal plasma cells (PC) in the bone marrow (BM). The molecular bases for this incurable disease have been widely investigated in the last years, and the development of modern genomic technologies has contributed to the understanding of the pathogenesis of MM. The molecular mechanisms that explain the cellular origin of myeloma cells, the cytogenetic abnormalities and their clinical implications, and the biological information provided by gene expression profiling analysis are reviewed in this paper. In addition, a molecular classification of MM in seven groups based on the relationship between gene expression profiling, chromosomal translocations and prognostic outcome is also presented. And finally, the recent hypothesis of a potential unifying event in the pathogenesis of MM, supported by cyclin D deregulation in virtually all MM tumours, will be summarised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kyle RA, Therneau TM, Rajkumar SV et al (2002) A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med 346:564–569

    Article  PubMed  Google Scholar 

  2. Kyle RA, Rajkumar SV (2005) Monoclonal gammopathy of undetermined significance. Clin Lymphoma Myeloma 6:102–114

    Article  PubMed  Google Scholar 

  3. Fugmann SD, Lee AI, Shockett PE et al (2000) The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu Rev Immunol 18:495–527

    Article  PubMed  CAS  Google Scholar 

  4. Honjo T, Kinoshita K, Muramatsu M (2002) Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol 20:165–196

    Article  PubMed  CAS  Google Scholar 

  5. Papavasiliou FN, Schatz DG (2002) Somatic hypermutation of immunoglobulin genes: merging me chanisms for genetic diversity. Cell 109[Suppl]:S35–S44

    Article  PubMed  CAS  Google Scholar 

  6. González D, van der BM, García-Sanz R et al (2007) Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood (in press)

  7. Kuppers R (2005) Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 5:251–262

    Article  PubMed  CAS  Google Scholar 

  8. Shaffer AL, Rosenwald A, Staudt LM (2002) Lymphoid malignancies: the dark side of B-cell differentiation. Nat Rev Immunol 2:920–932

    Article  PubMed  CAS  Google Scholar 

  9. Shapiro-Shelef M, Calame K (2005) Regulation of plasma-cell development. Nat Rev Immunol 5:230–242

    Article  PubMed  CAS  Google Scholar 

  10. Bakkus MH, Heirman C, Van Riet I et al (1992) Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 80:2326–2335

    PubMed  CAS  Google Scholar 

  11. Sahota SS, Leo R, Hamblin TJ et al (1996) Ig VH gene mutational patterns indicate different tumor cell status in human myeloma and monoclonal gammopathy of undetermined significance. Blood 87:746–755

    PubMed  CAS  Google Scholar 

  12. Zandecki M, Lai JL, Facon T (1996) Multiple myeloma: almost all patients are cytogenetically abnormal. Br J Haematol 94:217–227

    Article  PubMed  CAS  Google Scholar 

  13. Fonseca R, Barlogie B, Bataille R et al (2004) Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 64:1546–1558

    Article  PubMed  CAS  Google Scholar 

  14. Gutierrez NC, Hernandez JM, Garcia JL et al (2001) Differences in genetic changes between multiple myeloma and plasma cell leukemia demonstrated by comparative genomic hybridization. Leukemia 15:840–845

    Article  PubMed  CAS  Google Scholar 

  15. Sawyer JR, Lukacs JL, Munshi N et al (1998) Identification of new nonrandom translocations in multiple myeloma with multicolor spectral karyotyping. Blood 92:4269–4278

    PubMed  CAS  Google Scholar 

  16. Tabernero D, San Miguel JF, Garcia-Sanz R et al (1996) Incidence of chromosome numerical changes in multiple myeloma. Am J Pathol 149:153–161

    PubMed  CAS  Google Scholar 

  17. Zhan F, Hardin J, Kordsmeier B et al (2002) Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 99:1745–1757

    Article  PubMed  CAS  Google Scholar 

  18. Kuehl WM, Bergsagel PL (2002) Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2:175–187

    Article  PubMed  CAS  Google Scholar 

  19. Bergsagel PL, Kuehl WM (2005) Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 23:6333–6338

    Article  PubMed  CAS  Google Scholar 

  20. Ronchetti D, Finelli P, Richelda R et al (1999) Molecular analysis of 11q13 breakpoints in multiple myeloma. Blood 93:1330–1337

    PubMed  CAS  Google Scholar 

  21. Chesi M, Nardini E, Lim RS et al (1998) The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 92:3025–3034

    PubMed  CAS  Google Scholar 

  22. Keats JJ, Reiman T, Maxwell CA et al (2003) In multiple myeloma, t(4; 14)(p 16; q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 101:1520–1529

    Article  PubMed  CAS  Google Scholar 

  23. Santra M, Zhan F, Tian E et al (2003) A subset of multiple myeloma harboring the t(4; 14) (p16;q32) translocation lacks FGFR3 expression but maintains an IGH/MMSET fusion transcript. Blood 101:2374–2376

    Article  PubMed  CAS  Google Scholar 

  24. Chesi M, Nardini E, Brents LA et al (1997) Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 16:260–264

    Article  PubMed  CAS  Google Scholar 

  25. Grand EK, Chase AJ, Heath C et al (2004) Targeting FGFR3 in multiple myeloma: inhibition of t(4; 14)-positive cells by SU5402 and PD173074. Leukemia 18:962–966

    Article  PubMed  CAS  Google Scholar 

  26. Trudel S, Li ZH, Wei E et al (2005) CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood 105:2941–2948

    Article  PubMed  CAS  Google Scholar 

  27. Chesi M, Bergsagel PL, Shonukan OO et al (1998) frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 91:4457–4463

    PubMed  CAS  Google Scholar 

  28. Bergsagel PL, Kuehl WM (2001) Chromosome translocations in multiple myeloma. Oncogene 20:5611–5622

    Article  PubMed  CAS  Google Scholar 

  29. Hurt EM, Wiestner A, Rosenwald A et al (2004) Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 5:191–199

    Article  PubMed  CAS  Google Scholar 

  30. Shaughnessy J Jr, Gabrea A, Qi Y et al (2001) Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 98:217–223

    Article  PubMed  CAS  Google Scholar 

  31. Smadja NV, Fruchart C, Isnard F et al (1998) Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases. Leukemia 12:960–969

    Article  PubMed  CAS  Google Scholar 

  32. Fonseca R, Debes-Marun CS, Picken EB et al (2003) The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood 102:2562–2567

    Article  PubMed  CAS  Google Scholar 

  33. Smadja NV, Leroux D, Soulier J et al (2003) Further cytogenetic characterization of multiple myeloma confirms that 14q32 translocations are a very rare event in hyperdiploid cases. Genes Chromosomes Cancer 38:234–239

    Article  PubMed  Google Scholar 

  34. Mateo G, Castellanos M, Rasillo A et al (2005) Genetic abnormalities and patterns of antigenic expression in multiple myeloma. Clin Cancer Res 11:3661–3667

    Article  PubMed  CAS  Google Scholar 

  35. Avet-Louseau H, Daviet A, Sauner S et al (2000) Chromosome 13 abnormalities in multiple myeloma are mostly monosomy 13. Br J Haematol 111:1116–1117

    Article  PubMed  CAS  Google Scholar 

  36. Fonseca R, Oken MM, Harrington D et al (2001) Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy. Leukemia 15:981–986

    Article  PubMed  CAS  Google Scholar 

  37. Fonseca R, Blood E, Rue M et al (2003) Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 101:4569–4575

    Article  PubMed  CAS  Google Scholar 

  38. Moreau P, Facon T, Leleu X et al (2002) Recurrent 14q32 translocations determine the prognosis of multiple myeloma, especially in patients receiving intensive chemotherapy. Blood 100:1579–1583

    Article  PubMed  CAS  Google Scholar 

  39. Avet-Loiseau H, Attal M, Moreau P et al (2007) Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood 109:3489–3495

    Article  PubMed  CAS  Google Scholar 

  40. Gutierrez NC, Castellanos MV, Martin ML et al (2007) Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4; 14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis. Leukemia 21:143–150

    Article  PubMed  CAS  Google Scholar 

  41. Gutiérrez NC, García JL, Hernández JM et al (2004) Prognostic and biologic significance of chromosomal imbalances assessed by comparative genomic hybridization in multiple myeloma. Blood 104:2661–2666.

    Article  PubMed  CAS  Google Scholar 

  42. Pérez-Simón JA, García-Sanz R, Tabernero MD et al (1998) Prognostic value of numerical chromosome aberrations in multiple myeloma: A FISH analysis of 15 different chromosomes. Blood 91:3366–3371

    PubMed  Google Scholar 

  43. Shaughnessy J Jr, Tian E, Sawyer J et al (2003) Prognostic impact of cytogenetic and interphase fluorescence in situ hybridization-defined chromosome 13 deletion in multiple myeloma: early results of total therapy II. Br J Haematol 120:44–52

    Article  PubMed  Google Scholar 

  44. Tricot G, Barlogie B, Jagannath S et al (1995) Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 86:4250–4256

    PubMed  CAS  Google Scholar 

  45. Drach J, Ackermann J, Fritz E et al (1998) Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. Blood 92:802–809

    PubMed  CAS  Google Scholar 

  46. Shaughnessy J (2005) Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27Kipl and an aggressive clinical course in multiple myeloma. Hematology 10[Suppl 1]:117–126

    Article  PubMed  CAS  Google Scholar 

  47. Avet-Loiseau H, Facon T, Daviet A et al (1999) 14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a multistep process for the oncogenesis of multiple myeloma. Intergroupe Francophone du Myelome. Cancer Res 59:4546–4550

    PubMed  CAS  Google Scholar 

  48. Fonseca R, Bailey RJ, Ahmann GJ et al (2002) Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 100:1417–1424

    PubMed  CAS  Google Scholar 

  49. Avet-Loiseau H, Li JY, Morineau N et al (1999) Monosomy 13 is associated with the transition of monoclonal gammopathy of undetermined significance to multiple myeloma. Intergroupe Francophone du Myelome. Blood 94:2583–2589

    PubMed  CAS  Google Scholar 

  50. Chng WJ, Van Wier SA, Ahmann GJ et al (2005) A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood 106:2156–2161

    Article  PubMed  CAS  Google Scholar 

  51. Shou Y, Martelli ML, Gabrea A et al (2000) Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci U S A 97:228–233

    Article  PubMed  CAS  Google Scholar 

  52. Liu P, Leong T, Quam L et al (1996) Activating mutations of N-and K-ras in multiple myeloma show different clinical associations: analysis of the Eastern Cooperative Oncology Group Phase III Trial. Blood 88:2699–2706

    PubMed  CAS  Google Scholar 

  53. Neri A, Baldini L, Trecca D et al (1993) p53 gene mutations in multiple myeloma are associated with advance of malignancy. Blood 81:128–135

    PubMed  CAS  Google Scholar 

  54. Guillerm G, Gyan E, Wolowiec D et al (2001) p16(INK4a) andp15(INK4b) gene methylations in plasma cells from monoclonal gammopathy of undetermined significance. Blood 98:244–246

    Article  PubMed  CAS  Google Scholar 

  55. Mateos MV, García-Sanz R, López-Pérez R et al (2001) p16/INK4a gene inactivation by hypermethylation is associated with aggressive variants of monoclonal gammopathies. Hematol J 2:146–149

    Article  PubMed  CAS  Google Scholar 

  56. Davies FE, Dring AM, Li C et al (2003) Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood 102:4504–4511

    Article  PubMed  CAS  Google Scholar 

  57. Zhan F, Huang Y, Colla S et al (2006) The molecular classification of multiple myeloma. Blood 108:2020–2028

    Article  PubMed  CAS  Google Scholar 

  58. Bergsagel PL, Kuehl WM, Zhan F et al (2005) Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 106:296–303

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. San Miguel.

Additional information

Supported by an unrestricted educational grant from Sanofi-Aventis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, N.C., García-Sanz, R. & San Miguel, J.F. Molecular biology of myeloma. Clin Transl Oncol 9, 618–624 (2007). https://doi.org/10.1007/s12094-007-0114-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-007-0114-4

Key words

Navigation