Skip to main content
Log in

Characteristics of a Recombinant 2,3-Dihydroxybiphenyl 1,2-Dioxygenase from Comamonas sp. Expressed in Escherichia coli

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

2,3-Dihydroxybiphenyl 1,2-dioxygenase (2,3-DBDO) is an extradiol-type dioxygenase that involved in third step of biphenyl degradation pathway. The nucleotide sequence of the bphC gene from Comamonas sp. SMN4, which encodes 2,3-DBDO with His-tag, was cloned into a plasmid pQE30 in E. coli. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis of the purified active 2,3-DBDO showed a single band around 33 kDa, corresponding the molecular mass of 2,3-DBDO subunit. Two fractions around 170 and 100 kDa were separated in gel filtration chromatography, but only former one (the fraction of 170 kDa) has 2,3-DBDO activity. The 2,3-DBDO was reported as the polymeric protein consisted of eight subunits. However, the fraction corresponding octameric protein of 2,3-DBDO was not found in the gel filtration chromatography. The 2,3-DBDO was exhibited the maximum activity at pH 9.0 and was stable at pH 8.0, relatively. The circular dichroism (CD) data showed that 2,3-DBDO had an α-helical folding structures at neutral pHs ranged from pH 4.5 to pH 9.0. However, this high stable folding structure was converted to unfolded structure in acidic region (pH 2.5) or in high pH (pH 12.0). The enzyme was thermally stable and active up to 40 °C. The conformational data by CD spectra were consistent with the stability of 2,3-DBDO by checking the activity. The binding affinity (K m ) for 2,3-dihydroxybiphenyl, 3-metylcatechol, 4-methylcatechol and catechol was 11.7, 24 μM, 50 mM and 625 μM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mondello FJ (1989) Cloning and expression in Escherichia coli of Pseudomonas strain LB400 genes encoding polychlorinated biphenyl degradation. J Bacteriol 171:1725–1732

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Furukawa K, Suenaga H, Goto M (2004) Biphenyl dioxygenases: functional versatilities and directed evolution. J Bacteriol 186:5189–5196. doi:10.1128/JB.186.16.5189-5196.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hayase N, Taira K, Furukawa K (1990) Pseudomonas putida KF715 bphABCD operon encoding biphenyl and polychlorinated biphenyl degradation: cloning, analysis, and expression in soil bacteria. J Bacteriol 172:1160–1164

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Senda T, Kazuyuki S, Narita H, Yamamoto T, Kimbara K, Fukuda M, Sato M, Yano K, Mitsui Y (1996) Three-dimensional structures of free form and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BphC enzyme from Pseudomonas sp. strain KKS102. J Mol Biol 255:735–752. doi:10.1006/jmbi.1996.0060

    Article  CAS  PubMed  Google Scholar 

  5. Hein P, Powlowski J, Hurtubise Y, Ahmad D, Sylvestre M (1998) Biphenyl-associated meta-cleavage dioxygenases from Comamonas testosterone B-356. Can J Microbiol 44:42–49. doi:10.1139/w97-119

    Article  CAS  PubMed  Google Scholar 

  6. Sakai M (2002) Diversity of 2,3-dihydroxybiphenyl dioxygenase genes in a strong PCB degrader, Rhodocoddus sp. strain RAH1. J Biosci Bioeng 93:421–427

    Article  CAS  PubMed  Google Scholar 

  7. Furukawa K, Matsumura F (1976) Microbial metabolism of polychlorinated biphenyls. Studies on the relative degradability of polychlorinated biphenyl components by Alcaligenes sp. J Agric Food Chem 24:251–256. doi:10.1021/jf60204a002

    Article  CAS  PubMed  Google Scholar 

  8. On HY, Lee N, Kim YC, Kim CK, Kim YS, Park YK, Ka JO, Lee KS, Min KH (1998) Extradiol cleavage of two-ring structure of biphenyl and indole oxydation by biphenyl dioxygenase in Comamonas acidovorans. J Microbiol Biotechnol 8:264–269

    Google Scholar 

  9. Lee N, Lee JM, Min KH, Kwon DY (2003) The purification and characterization of 2,3-dihydroxybiphenyl 1,2-dioxygenase from Comamonas sp. SMN4. J Microbiol Biotechnol 13:487–494

    CAS  Google Scholar 

  10. Eltis LD, Hofmann B, Hecht HJ, Lunsdorf H, Timmis KN (1993) Purification and crystallization of 2,3-dihydroxybiphenyl 1,2-dioxygenase. J Biol Chem 268:2727–2732

    CAS  PubMed  Google Scholar 

  11. Khan AA, Nawaz MS, Cerniglia CE (1997) Rapid purification of an active recombinant His-tagged 2,3-dihydroxybiphenyl 1,2-dioxygenase from Pseudomonas putida OU83. FEMS Microbiol Lett 62:1825–1830. doi:10.1111/j.1574-6968.1997.tb10404.x

    Google Scholar 

  12. Xiong F, Shuai JJ, Jin SF, Zhang J, Sun J, Peng RH, Yao QH (2012) Expression and characterization of a recombinant 2,3-dihydroxybiphenyl-1,2-dioxygenase from Pseudomonas. Mol Cell Toxicol 8:375–382. doi:10.1007/s13273-012-0046-0

    Article  CAS  Google Scholar 

  13. Lee N, Kwon DY, Min KH (2003) Cloning and sequence analyses of a 2,3-dihydroxybiphenyl 1,2-dioxygenase gene (bphC) from Comamonas sp. SMN4 for phylogenetic and structural analysis. J Ind Microbiol Biotechnol 30:245–250. doi:10.1007/s10295-003-0039-z

    Article  CAS  PubMed  Google Scholar 

  14. Parath J, Carlson J, Olsson I, Belfrage G (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598–599. doi:10.1038/258598a0

    Article  Google Scholar 

  15. Sambrook J, Russell DW (2001) Molecular cloning; a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. doi:10.1101/pdb.prot3901

    Google Scholar 

  16. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using Bicinchoninic acid. Anal Biochem 150:76–85. doi:10.1016/0003-2697(85)90442-7

    Article  CAS  PubMed  Google Scholar 

  17. Kwon DY, Kim PS (1994) The stabilizing effects of hydrophobic cores on peptide folding of bovine-pancreatic-trypsin-inhibitor folding-intermediate model. Eur J Biochem 223:631–636. doi:10.1111/j.1432-1033.1994.tb19035.x

    Article  CAS  PubMed  Google Scholar 

  18. Venyaminov SY, Yang JT (1996) Determination of protein secondary structure. In: Fasman GD (ed) Circular dichroism and the conformational analysis of biomolecules. Plenum Press, New York, pp 69–108. doi:10.1007/978-1-4757-2508-7-3

    Chapter  Google Scholar 

  19. Furukawa K, Arimura N (1987) Purification and properties of 2,3-dihydroxybiphenyl dioxygenase from polychlorinated biphenyl-degrading Pseudomonas pseudoalcaligenes and Pseudomonas aeruginosa carrying the cloned bphC gene. J Bacteriol 169:924–927

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cantor CR, Schimmel PR (1980) Biophysical chemistry, part II: techniques for the study of biological structure and function. Freeman, San Francisco, pp 670–676. doi:10.1016/0307-4412(81)90143-6

    Google Scholar 

  21. Cao L, Cao Y, Wu G, Li M, Xu J, He J, Li S, Hong Q (2013) Cloning of three 2,3-dihydroxybiphenyl-1,2-dioxygenase genes from Achromobacter sp. BP3 and the analysis of their roles in the biodegradation of biphenyl. J Hazard Mater 261:246–252. doi:10.1016/j.jhazmat.2013.07.019

    Article  CAS  PubMed  Google Scholar 

  22. Chant A, Kraemer-Pecore CM, Watkin R, Kneale GG (2005) Attachment of a histidine tag to the minimal zinc finger protein of the Aspergillus nidulans gene regulatory protein AreA causes a conformational change at the DNA-binding site. Protein Expr Purif 39:152–159. doi:10.1016/j.pep.2004.10.017

    Article  CAS  PubMed  Google Scholar 

  23. Kotake T, Matsuzawa J, Suzuki-Minakuchi C, Okada K, Nojiri H, Iwata K (2016) Purification and partial characterization of the extradiol dioxygenase, 2′-carboxy-2,3-dihydroxybiphenyl 1,2-dioxygenase, in the fluorene degradation pathway from Rhodococcus sp. strain DFA3. Biosci Biotechnol Biochem 80:719–725. doi:10.1080/09168451.2015.1123605

    Article  CAS  PubMed  Google Scholar 

  24. Kim PS, Baldwin RL (1990) Intermediates in the folding reactions of small proteins. Ann Rev Biochem 59:631–660. doi:10.1146/annurev.bi.59.070190.003215

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Korea Food Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nari Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, N., Kwon, D.Y. Characteristics of a Recombinant 2,3-Dihydroxybiphenyl 1,2-Dioxygenase from Comamonas sp. Expressed in Escherichia coli . Indian J Microbiol 56, 467–475 (2016). https://doi.org/10.1007/s12088-016-0599-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-016-0599-z

Keywords

Navigation