Skip to main content
Log in

Dietary Saccharomyces cerevisiae Boosts Growth and Immunity of IMC Labeo rohita (Ham.) Juveniles

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The study attempted to confirm the efficacy of Saccharomyces cerevisiae as a probiotic in augmenting the overall wellbeing and disease resistance in the Indian Major Carp, rohu (Labeo rohita) juveniles. The growth rate, nutritional quality and immunity of L. rohita fry were studied for 60 days fed with four isocaloric and isonitrogenous diets supplemented with 0.50 % (L1), 0.75 % (L2) and 1.00 % (L3) lyophilized whole yeast (S. cerevisiae) cells. L3-fed fish registered significantly better in wellbeing parameters such as growth, RNA:DNA, lower feed conversion and higher protein efficiency ratios. High intestinal enzyme (protease and α-amylase) activities, high liver serum GOT and GPT activities, and better non-specific immune responses were also demonstrated by them. The blood parameters hemoglobin, total erythrocyte and leukocyte counts, corpuscular volume, corpuscular hemoglobin, and cell hemoglobin concentration were also encouraging. Challenged with Aeromonas hydrophila AH2 (hourly exposure to 105 and 107 CFUs/ml strengths with a week interval) by bath exposure, highest survival percentage (96.66 %) was observed in L3-fed fish, whereas only 30 % in the control, after 10 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. All the values are provided on per liter basis; the final pH was adjusted to 5.5.

References

  1. Zhang X, Shu M, Wang Y, Fu L, Li W, Deng B, Liang Q, Shen W (2014) Effect of photosynthetic bacteria on water quality and microbiota in grass carp culture. World J Microbiol Biotechnol 30:2523–2531. doi:10.1007/s11274-014-1677-1

    Article  CAS  PubMed  Google Scholar 

  2. Mishra S, Pattnaik P, Mohanty S, Ayyappan S (2001) Probiotics: possible applications in aquaculture. Fish Chimes 21:31–37

    Google Scholar 

  3. Navarrete P, Tovar-Ramírez D (2014) Use of yeasts as probiotics in fish aquaculture. In: Hernandez-Vergara MP, Perez-Rostro CI (ed) Sustainable aquaculture techniques. INTECH Open Science, pp 135–172. doi:10.5772/57196

  4. Takada Y, Nishino Y, Ito C, Watanabe H, Kanzaki K, Tachibana T, Azuma M (2014) Isolation and characterization of baker’s yeast capable of strongly activating a macrophage. FEMS Yeast Res 14:261–269. doi:10.1111/1567-1364.12098

    Article  CAS  PubMed  Google Scholar 

  5. Perez-Sanchez T, Ruiz-Zarzuela I, de Blas I, Balcazar JL (2013) Probiotics in aquaculture: a current assessment. Rev Aquac. doi:10.1111/raq.1203

    Google Scholar 

  6. Rozita K, Shila S, Mahdy C (2013) Effect whole and cell wall of Saccharomyces cerevisiae in immunity factors on rainbow trout (Oncorhynchus mykiss). American-Eurasian J Agric Environ Sci 13:633–638. doi:10.5829/idosi.aejaes.2013.13.05.224

    CAS  Google Scholar 

  7. Ortuno J, Cuesta A, Rodriguez A, Esteban MA, Meseguer J (2002) Oral administration of yeast Saccharomyces cerevisiae enhances the cellular innate immune response of gilthead seabream (Sparus aurata L.). Vet Immunol Immunopathol 85:41–50. doi:10.1016/S0165-2427(01)00406-8

    Article  CAS  PubMed  Google Scholar 

  8. Mari S, Samy L, Jagruthi C, Anbazahan SM, Yogeshwari G, Thirumurugan R, Arockiaraj J, Mariappan P, Balasundaram C, Harikrishnan R (2014) Protective effect of chitin and chitosan enriched diets on immunity and disease resistance in Cirrhina mrigala against Aphanomyces invadans. Fish Shellfish Immunol 39:378–385. doi:10.1016/j.fsi.2014.05.027

    Article  Google Scholar 

  9. Pooramini M, Kamali A, Hajimoradloo A, Alizadeh M, Ghorbani R, Hatami R, Haghparast S (2014) The effects of different concentrations of probiotic Saccharomyces cerevisiae on growth performance and survival rate of rainbow trout (Oncorhynchus mykiss), fry and resistance against salinity. Afr J Biotechnol 13:1160–1168. doi:10.5897/AJB2013.12214

    Article  Google Scholar 

  10. Josue SP, Knauth P, Zaira L, Orfil GR, Ester MRM, Victor GA, Monique L, Rosa AUB (2014) Differences in the amount of β-glucan and mannan in strains of Saccharomyces cerevisiae and Meyerozyma guilliermondii isolated from agave must used in tequila production. Microbiol Res Int 2:1–8, ISSN: 2354-2128

  11. Sych G, Frost P, Irnazarow I (2013) Influence of β-glucan (Macrogard®) on innate immunity of carp fry. Bull Vet Inst Pulawy 57:219–223. doi:10.2478/bvip-2013-0039

    CAS  Google Scholar 

  12. De BC, Meena DK, Behera BK, Das P, Mohapatra PD, Sharma AP (2014) Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. Fish Physiol Biochem 40:921–971. doi:10.1007/s10695-013-9897-0

    CAS  Google Scholar 

  13. El-Zaeem SY, Amer TN, El-Tawil NE (2014) Evaluation of the productive performance characteristics of red tilapia (Oreochromis sp.) injected with shark DNA into skeletal muscles and maintained diets containing different levels of probiotic and amino yeast. Afr J Biotechnol 11:7286–7293. doi:10.1016/j.ijmm.2009.08.005

    Google Scholar 

  14. APHA (2005) Standard methods for the examination of water and wastewater. 21st Ed. Am Public Health Assoc, Washington DC, www.standardmethods.org, ISBN:0875530478

  15. Nandeesha MC, Sentilkumar V, Antony Jesu Prabhu P (2013) Feed management of major carps in India, with special reference to practices adopted in Tamil Nadu. In: Hasan MR, New MB (eds) On-farm feeding and feed management in aquaculture. FAO Fisheries and Aquaculture Technical Paper No. 583, Rome, FAO, E-ISBN:978-92-5-107979-9, pp 433–462

  16. AOAC (2000) Official methods of analysis. 17th Ed. Association of Official Analytical Chemists, Gaithersburg, Maryland, USA, ISBN:0935584676/9780935584677

  17. Lavanya S, Ramesh M, Kavitha C, Malarvizhi A (2011) Hematological, biochemical and ionoregulatory responses of Indian major carp Catla catla during chronic sublethal exposure to inorganic arsenic. Chemosphere 82:977–985. doi:10.1016/j.chemosphere.2010.10.071

    Article  CAS  PubMed  Google Scholar 

  18. Oelschlaeger TA (2010) Mechanisms of probiotic actions: a review. Int J Med Microbiol 300:57–62. doi:10.1016/j.ijmm.2009.08.005

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Li J, Lin J (2008) Probiotics in aquaculture: challenges and outlook. Aquaculture 281:1–4. doi:10.1016/j.aquaculture.2008.06.002

    Article  Google Scholar 

  20. Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274:1–14. doi:10.1016/j.aquaculture.2007.11.019

    Article  Google Scholar 

  21. Sahu MK, Swarnakumar NS, Sivakumar K, Thangaradjou T, Kannan L (2008) Probiotics in aquaculture: importance and future perspectives. Indian J Microbiol 48:299–308. doi:10.1007/s12088-008-0024-3

    Article  PubMed Central  PubMed  Google Scholar 

  22. Qi Z, Zhang XH, Boon N, Bossier P (2009) Probiotics in aquaculture of China—current state, problems and prospect. Aquaculture 290:15–21. doi:10.1016/j.aquaculture.2009.02.012

    Article  Google Scholar 

  23. Balcazar JL, Vendrell D, Blas I, Ruiz-Zarzuela I, Girones O, Muzquiz JL (2007) In vitro competitive adhesion and production of antagonistic compounds by lactic acid bacteria against fish pathogens. Vet Microbiol 122:373–380. doi:10.1016/j.vetmic.2007.01.023

    Article  CAS  PubMed  Google Scholar 

  24. Denev S, Staykov Y, Moutafchieva R, Beev G (2009) Microbial ecology of the gastrointestinal tract of fish and the potential application of probiotics and prebiotics in finfish aquaculture, 1:1–29 Int Aquat Res, ISSN: 2008-4935

  25. Aly SM, Abd-El-Rahman AM, John G, Mohamed MF (2008) Characterization of some bacteria isolated from Oreochromis niloticus and their potential use as probiotics. Aquaculture 277:1–6. doi:10.1016/j.aquaculture.2008.02.021

    Article  Google Scholar 

  26. Zhou X, Tian Z, Wang Y, Li W (2010) Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish Physiol Biochem 36:501–509. doi:10.1007/s10695-009-9320-z

    Article  CAS  PubMed  Google Scholar 

  27. Gomez GD, Balcazar JL (2008) A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunol Med Microbiol 52:145–154. doi:10.1111/j.1574-695X.2007.00343.x

    Article  CAS  PubMed  Google Scholar 

  28. Harikrishnan R, Balasundaramb C, Heo MS (2010) Effect of probiotics enriched diet on Paralichthys olivaceus infected with lymphocystis disease virus (LCDV). Fish Shellfish Immunol 29:868–874. doi:10.1016/j.fsi.2010.07.031

    Article  PubMed  Google Scholar 

  29. Kim DH, Austin B (2006) Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish Shellfish Immunol 21:513–524. doi:10.1016/j.fsi.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  30. Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14. doi:10.1016/j.fsi.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y (2011) Use of probiotics Bacillus coagulans, Rhodopseudomonas palustris and Lactobacillus acidophilus as growth promoters in grass carp (Ctenopharyngodon idella) fingerlings. Aquac Nutr 17:372–378. doi:10.1111/j.1365-2095.2010.00771.x

    Article  CAS  Google Scholar 

  32. Zhou X, Wang Y, Li W (2009) Effect of probiotic on larvae shrimp (Penaeus vannamei) based on water quality, survival rate and digestive enzyme activities. Aquaculture 287:349–353. doi:10.1016/j.aquaculture.2008.10.046

    Article  CAS  Google Scholar 

  33. Wang Y, Gu Q (2010) Effect of probiotics on white shrimp (Penaeus vannamei) growth performance and immune response. Mar Biol Res 6:327–332. doi:10.1080/17451000903300893

    Article  Google Scholar 

  34. Tovar-Ramírez D, Mazurais D, Gatesoupe JF, Quazuguel P, Cahu CL, Zambonino-Infante JL (2010) Dietary probiotic live yeast modulates antioxidant enzyme activities and gene expression of sea bass (Dicentrarchus labrax) larvae. Aquaculture 300:142–147. doi:10.1016/j.aquaculture.2009.12.015

    Article  Google Scholar 

  35. Zhou X, Wang Y (2012) Probiotics in aquaculture–benefits to the health, technological applications and safety. In: Carvalho ED, David GS, Silva RJ (eds) Health and environment in aquaculture. InTech, ISBN: 978-953-51-0497-1, pp 1–13. doi: 10.5772/29037

  36. Wang Y, Xu Z (2006) Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Anim Feed Sci Technol 127:283–292. doi:10.1016/j.anifeedsci.2005.09.003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

In terms of materials and facilities, the support and cooperation received from the CIFA, Bhubaneswar for the various wet-lab analyses, the IMMT, Bhubaneswar for the scanning electron microscopy facility, and the IMTECH, Chandigarh for the pathogenic strain used in the study are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehasish Mishra.

Additional information

Partha Bandyopadhyay and Snehasish Mishra: Co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 314 kb)

Supplementary material 2 (DOC 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, P., Mishra, S., Sarkar, B. et al. Dietary Saccharomyces cerevisiae Boosts Growth and Immunity of IMC Labeo rohita (Ham.) Juveniles. Indian J Microbiol 55, 81–87 (2015). https://doi.org/10.1007/s12088-014-0500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-014-0500-x

Keywords

Navigation