Skip to main content
Log in

In Vitro Evaluation of Antagonism of Endophytic Colletotrichum gloeosporioides Against Potent Fungal Pathogens of Camellia sinensis

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

An endophytic fungus isolated from Camellia sinensis, Assam, Northeastern India was identified as Colletotrichum gloeosporioides on the basis of morphological characteristics and rDNA ITS analysis. This endophytic fungus was evaluated for growth inhibition against tea pathogens Pestalotiopsis theae and Colletotrichum camelliae. One isolate of C. gloeosporioides showed strong antagonistic activity against Pestalotiopsis theae (64 %) and moderate activity against C. camelliae (37 %). Fifty percent cell-free culture filtrate from 5-day-old cultures showed highest antagonistic activity against both the pathogens although the inhibition percent was less as compared to dual culture. In the experiment of volatile compounds none of the isolates of C. gloeosporioides strains showed visible inhibition against P. theae and C. camelliae. The activity of extracellular hydrolytic enzymes chitinase and protease was also high in this culture fluid and measured 10 and 4.3 IU/μl, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Saikkonen K, Wali P, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbiosis. Trend Plant Sci 9:275–280

    Article  CAS  Google Scholar 

  2. Clay K, Hardy TN, Hammond AM Jr (1985) Fungal endophytes of grasses and their effects on an insect herbivore. Oecologia 66:1–5

    Article  Google Scholar 

  3. Clay K (1988) Fungal endophytes of grasses: defensive mutualism between plants and fungi. Ecology 69:10–16

    Article  Google Scholar 

  4. Kumar S, Kaushik N (2013) Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PLoS One 8:1–8

    Article  Google Scholar 

  5. Clarke BB, White JF Jr, Hurley RH, Torres MS, Sun S (2006) Endophyte mediated suppression of dollar spot disease in fine fescues. Plant Dis 90:994–998

    Article  Google Scholar 

  6. Kumar S, Kaushik N, Edrada-Ebel RA, Ebel R, Proksch P (2011) Isolation, characterization and bioactivity of endophytic fungi of Tylophora indica. World J Microbiol Biotechnol 27:571–577

    Article  Google Scholar 

  7. Li HY, Zhao CA, Liu CJ, Xu XF (2010) Endophytic fungi diversity of aquatic/riparian plants and their antifungal activity in vitro. J Microbiol 48:1–6

    Article  PubMed  Google Scholar 

  8. Narisawa K, Kawamata H, Currah RS, Hashiba T (2002) Suppression of Verticillium wilt in eggplant by some fungal root endophyte. Eur J Plant Pathol 108:103–109

    Article  Google Scholar 

  9. Fang W, Yang L, Zhu X, Zeng L, Li X (2013) Seasonal and habitat dependent variations in culturable endophytes of Camellia sinensis. J Plant Pathol Microb 4:3

    Article  Google Scholar 

  10. Chen HQ (2007) A preliminary study on endophytic fungi in tea plant (Camellia sinensis). Fujian, Normal University, Fuzhou

    Google Scholar 

  11. Douanla-Meli C, Langer E, Talontsi M (2013) Fungal endophyte diversity and community patterns in healthy and yellowing leaves of citrus limon. Fungal Ecol 6:212–222

    Article  Google Scholar 

  12. Photia W, Lumyong S, Lumyong P, Hyde KD (2001) Endophytic fungi of wild banana (Musa acuminata) at DoiSuthepPui National Park, in Thailand. Mycol Res 105:1508–1513

    Article  Google Scholar 

  13. Campanile G, Ruscelli A, Luisi N (2007) Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. Eur J Plant Pathol 117:237–246

    Article  Google Scholar 

  14. Kamalakannan A, Mohan L, Harish S, Radjacommare R, Amutha G, Chiara K, Karuppiah R, Mareeswari P, Rajinimala&Angayarkanni T (2004) Biocontrol agents induce disease resistance in Phyllanthus niruri Linn against camping-off disease caused by Rhizoctonia solani. Phytopathol Mediterr 43:187–194

    Google Scholar 

  15. Petrini O, Dreyfuss M (1981) EndophytischePilze in epiphytischenaraceae, bromeliaceae und orchidaceae. Sydowia 34:135–145

    Google Scholar 

  16. Petrini O (1984) Endophytic fungi in British ericaceae: a preliminary study. Trans Brit Mycol Soc 83:510–512

    Article  Google Scholar 

  17. Ghildial A, Pandey A (2008) Isolation of cold tolerant antifungal strains of Trichoderma sp. from glacier sites of Indian Himalayan region. Res J Microbiol 3(8):559–564

    Article  Google Scholar 

  18. Photita W, Taylor PWJ, Ford R, Hyde KD, Lumyong S (2005) Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Divers 18:117–133

    Google Scholar 

  19. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  20. Altshcul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  Google Scholar 

  21. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Guo Z, Hua R, Bai Y, Wu X, Cao H, Li X, Wu X, Tang J (2011) Screening and evaluation of antiphytopathogenic activity of endophytic fungi from live foliages of Ginkgo biloba L. Afr J Microbiol Res 13:1686–1690

    Google Scholar 

  23. Hankin L, Anagnostakis SL (1975) The use of solid media for detection of enzyme production by fungi. Mycologia 67:597–607

    Article  Google Scholar 

  24. Kumaresan V, Suryanarayanan TS (2002) Endophyte assemblages in young, mature and senescent leaves of Rhizophora apiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Divers 9:81–91

    Google Scholar 

  25. Kunitz N (1965) Methods of enzymatic analysis, 2nd edn. Verlag, N.Y., pp 807–814

    Google Scholar 

  26. Tikhonov VE, Lopez-Llorca LV, Salinas J, Jansson HB (2002) Purification and characterization of chitinases from the Nematophagus fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet Biol 35:67–78

    Article  CAS  PubMed  Google Scholar 

  27. Matroudi S, Zamani MR, Motallebi M (2009) Antagonistic effects of three species of Trichoderma sp. on Sclerotinia sclerotiorum, the causal agent of canola stem rot. Egypt J Biol 11:37–44

    Google Scholar 

  28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony method. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  30. Soytong K, Kanokmedhakul S, Kukongviriyapa V, Isobe M (2001) Application of Chaetomium species (Ketomium ®) as a new broad spectrum biological fungicide for plant disease control: a review article. Fungal Divers 7:1–15

    Google Scholar 

  31. Corrado M, Rodrigues KF (2004) Antimicrobial evaluation of fungal extracts produced by endophytic strains of Phomopsis sp. J Basic Microbiol 44:157–160

    Article  PubMed  Google Scholar 

  32. Ezra D, Hess WH, Strobel GA (2004) New endophytic isolates of M. alba, a volatile antibiotic- producing fungus. Microbiology 150:4023–4031

    Article  CAS  PubMed  Google Scholar 

  33. Kim S, Shin DS, Lee T, Oh KB (2004) Periconicins, two new fusicoccane diterpenes produced by an endophytic fungi Periconia sp. with antibacterial activity. J Nat Prod 67:448–450

    Article  CAS  PubMed  Google Scholar 

  34. Liu YJ, Song YC, Zhang Z, Wang L, Gou ZJ, Zou WX, Tan RX (2004) Aspergillus fumigates CY018, an endophytic fungi in Cynodon dactylon as a versatile producer of new and bioactive metabolites. J Biotechnol 114:279–287

    Article  CAS  PubMed  Google Scholar 

  35. Waller JM, Bridge PD, Black R, Hakiza G (1993) Characterization of the coffee berry disease pathogen Colletotrichum kahawae sp. Mycol Res 97:989–994

    Article  Google Scholar 

  36. Buddie A, Martinez-Culebras PV, Bridge PD, Cannon PF, Querol A, Garcia and Monte E (1999) Molecular characterization of Colletotrichum strains derived from strawberry. Mycol Res 103:385–394

    Article  CAS  Google Scholar 

  37. Freeman S, Pham M, Rodriguez RJ (1993) Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A-T-rich DNA and nuclear DNA analysis. Exp Mycol 17:309–322

    Article  CAS  Google Scholar 

  38. Martinez-Culebras PV, Barrio E, Suarez-Fernandez MB, Garcia-Lopez MD, Querol A (2002) RAPD analysis of Colletotrichum species isolated from strawberry and the design of specific primer for the identification of C. fragariae. J Phytopathol 150:680–686

    Article  CAS  Google Scholar 

  39. Zou WX, Meng JC, Lu H, Chen GX, Shi GX, Zhang TY, Tan RX (2000) Metabolites of C. gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529–1530

    Article  CAS  PubMed  Google Scholar 

  40. Inacio ML, Silva GH, Teles HL, Trevisan HC, Cavalheiro AJ, Bolzani VS, Young MCM, Pfenning LH, Araujo AR (2006) Antifungal metabolites from Colletotrichum gloeosporioides, an endophytic fungus in Cryptocarya mandioccana nees (Lauraceae). Biochem Syst Ecol 34:822–824

    Article  CAS  Google Scholar 

  41. Denise O, Guimaraes WS, Borges CY, Kawano PH, Ribeiro GH, Goldman ANOH, Thiemann GONP, Lopes MT (2008) Biological activities from extracts of endophytic fungi isolated from Viguieraarenaria and Tithonia diversifolia. FEMS Immunol Med Microbiol 52:134–144

    Article  Google Scholar 

  42. Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvias JC, Broglie R (1991) Transgenic plants with enhance resistance to the fungal pathogen RbiTactonia darri. Science 254:11194–11197

    Google Scholar 

  43. Jach G, Gomhhard B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Mass C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    Article  CAS  PubMed  Google Scholar 

  44. Haran S, Schickler H, Chet I (1996) Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology 142:2321–2331

    Article  CAS  Google Scholar 

Download references

Acknowledgments

First author wish to express the gratitude to Defence Research and Development Organization, New Delhi for providing fellowship. Authors are also thankful to Mycology division of Tocklai Tea Research Station of Assam, India for providing the isolates of the pathogens. Authors are also grateful to all the reviewers, who give freely of their time to expertise to review this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Jyoti Rabha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabha, A.J., Naglot, A., Sharma, G.D. et al. In Vitro Evaluation of Antagonism of Endophytic Colletotrichum gloeosporioides Against Potent Fungal Pathogens of Camellia sinensis . Indian J Microbiol 54, 302–309 (2014). https://doi.org/10.1007/s12088-014-0458-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-014-0458-8

Keywords

Navigation