Skip to main content

Advertisement

Log in

The dynamical implications of human behaviour on a social-ecological harvesting model

  • ORIGINAL PAPER
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

The dynamic aspects of human harvesting behaviour are often overlooked in resource management, such that models often neglect the complexities of dynamic human effort. Some researchers have recognized this, and a recent push has been made to understand how human behaviour and ecological systems interact through dynamic social-ecological systems. Here, we use a recent example of a social-ecological dynamical systems model to investigate the relationship between harvesting behaviour and the dynamics and stability of a harvested resource, and search for general rules in how relatively simple human behaviours can either stabilize or destabilize resource dynamics and yield. Our results suggest that weak to moderate behavioural and effort responses tend to stabilize dynamics by decreasing return times to equilibria or reducing the magnitude of cycles; however, relatively strong human impacts can readily lead to human-driven cycles, chaos, long transients and alternate states. Importantly, we further show that human-driven cycles are characteristically different from typical resource-driven cycles and, therefore, may be differentiated in real ecosystems. Given the potentially dramatic implications of harvesting on resource dynamics, it becomes critical to better understand how human behaviour determines harvesting effort through dynamic social-ecological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson CNK, Hsieh C, Sandin SA, Hewitt R, Hollowed A, Beddington J, May RM, Sugihara G (2008) Why fishing magnifies fluctuations in fish abundance. Nature 452:835–839

    Article  CAS  PubMed  Google Scholar 

  • Bascompte J, Melián CJ, Sala E (2005) Interaction strength combinations and the overfishing. Proc Natl Acad Sci U S A 102(15):5443–5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berlow EL, Neutel A-M, Cohen JE, de Ruiter PC, Ebenman B, Emmerson M, Fox JW et al (2004) Interaction strengths in food webs. J Anim Ecol 73:585–598

    Article  Google Scholar 

  • Boettiger C, Hastings A (2012) Quantifying limits to detection of early warning for critical transitions. J R Soc Interface 9(75):2527–2539

    Article  PubMed  PubMed Central  Google Scholar 

  • De Ruiter PC, Neutel A-M, Moore JC (1995) Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269(5228):1257–1260

    Article  CAS  PubMed  Google Scholar 

  • Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR et al (2011) Trophic downgrading of planet earth. Science 333:301–307

    Article  CAS  PubMed  Google Scholar 

  • Fryxell JM, Packer C, McCann KS, Solberg EJ, Saether B-E (2010) Resource management cycles and the sustainability of harvested wildlife populations. Science 328:903–906

    Article  CAS  PubMed  Google Scholar 

  • Fulton EA, Smith ADM, Smith DC, van Putten IE (2011) Human behaviour: the key source of uncertainty in fisheries management. Fish Fish 12:2–17

    Article  Google Scholar 

  • Gellner G, McCann KS (2016) Consistent role of weak and strong interactions in high- and low-diversity trophic food webs. Nat Commun 7(11180):8pp

  • Gellner G, McCann KS, and Hastings A. 2016. The duality of stability: towards a stochastic theory of species interactions. Theoretical Ecology, pp 9

  • Gilbert B, Tunney TD, McCann KS, DeLong JP, Vasseur DA, Savage V, Shurin JB et al (2014) A bioenergetic framework for the temperature dependence of trophic interactions. Ecol Lett 17(8):902–914

    Article  PubMed  Google Scholar 

  • Guckenheimer J, Holmes PJ (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New York

    Book  Google Scholar 

  • Hone ANW, Irle MV, Thurura GW (2010) On the Neimark-Sacker bifurcation in a discrete predator-prey system. J Biol Dyn 4(6):594–606

    Article  CAS  PubMed  Google Scholar 

  • Horan RD, Fenichel EP, Drury KLS, Lodge DM (2011) Managing ecological thresholds in coupled environmental-human systems. Proc Natl Acad Sci 108(18):7333–7338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh C-H, Reiss CS, Hunter JR, Beddington JR, May RM, Sugihara G (2006) Fishing elevates variability in the abundance of exploited species. Nature 443:859–862

    Article  CAS  PubMed  Google Scholar 

  • Lade SJ, Tavoni A, Levin SA, Schlüter M (2013) Regime shifts in a social-ecological system. Theor Ecol 6(3):359–372

    Article  Google Scholar 

  • Lade SJ, Niiranen S, Hentati-Sundberh J, Blencker T, Boonstra WJ, Orach K, Quaas MF, Österblom H, Schlüter M (2015) An empirical model of the Blatic Sea reveals the importance of social dynamics for ecological regime shifts. Proc Natl Acad Sci 112(35):11120–11125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May RM, Oster GF (1976) Bifurcations and dynamic complexity in simple ecological models. Am Nat 110(974):573–599

    Article  Google Scholar 

  • McCann KS. 2011. Food webs (MPB-50), Princeton University Press

  • McCann KS, Yodzis P (1994) Nonlinear dynamics and population disappearances. Am Nat 144(5):873–879

    Article  Google Scholar 

  • McCann KS, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395(6704):794–798

    Article  CAS  Google Scholar 

  • McCann KS, Gellner G, McMeans BC, Deenik T, Holtgrieve G, Rooney N, Hannah L, Cooperman M, So N (2016) Food webs and the sustainability of indiscriminate fisheries. Can J Fish Aquat Sci 73:656–665

    Article  CAS  Google Scholar 

  • Milner-Gulland EJ (2011) Integrating fisheries approaches and household utility models for improved resource management. Proc Natl Acad Sci 108(4):1741–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murdoch WW, Briggs CL, and Nisbet RM. 2003. Consumer-resource dynamics (MPB-36), Princeton University Press

  • Nilsson KA, McCann KS (2016) Interaction strength revisited—clarifying the role of energy flux for food web stability. Theor Ecol 9(1):59–71

    Article  Google Scholar 

  • Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 325:419–422

    Article  CAS  PubMed  Google Scholar 

  • Ricker WE (1954) Stock and recruitment. Journal of the Fisheries Board of Canada 11(5):559–623

    Article  Google Scholar 

  • Rosenzweig ML (1971) Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171(3969):385–387

    Article  CAS  PubMed  Google Scholar 

  • Salas S, Gaertner D (2004) The behavioural dynamics of fishers: management implications. Fish Fish 5:153–167

    Article  Google Scholar 

  • Schlüter M, McAllister RRJ, Arlinghaus R, Bunnefeld N, Eisenack K, Hölker F, Milner-Gulland EJ et al (2012) New horizons for managing the environment: a review of coupled social-ecological systems modeling. Nat Resour Model 25(1):219–272

    Article  Google Scholar 

  • Schlüter M, Tavoni A, Levin S (2016) Robustness of norm-driven cooperation in the commons. Proc R Soc B 283:20152431

    Article  PubMed  PubMed Central  Google Scholar 

  • Schreiber SJ (2003) Allee effects, extinctions, and chaotic transients in simple population models. Theor Popul Biol 64:201–209

    Article  PubMed  Google Scholar 

  • Shelton AO, Mangel M (2011) Fluctuations of fish populations and the magnifying effects of fishing. Proc Natl Acad Sci 108(17):7075–7080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strogatz SH. 2014. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, Westview Press

  • Tavoni A, Schlüter M, Levin S (2012) The survival of the conformist: social pressure and renewable resource management. J Theor Biol 299:152–161

    Article  PubMed  Google Scholar 

  • Travis J, Coleman FC, Auster PJ, Cury PM, Estes JA, Orensanz J, Peterson CH, Power ME, Steneck RS, Wootton JT (2014) Integrating the invisible fabric of nature into fisheries management. Proc Natl Acad Sci 111(2):581–584

    Article  CAS  PubMed  Google Scholar 

  • Turchin P. 2003. Complex population dynamics: a theoretical/empirical synthesis, Princeton University Press

  • Whipple SJ, Link JS, Garrison LP, Fogarty MJ (2000) Models of predation and fishing mortality in aquatic ecosystems. Fish Fish 1(1):22–40

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Belmont Freshwater Security and NSERC Discovery grants to KSM. This paper is also a contribution to the Food from Thought research program supported by the Canada First Research Excellence Fund. We would like to thank three anonymous reviewers whose comments and suggestions helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carling Bieg.

Electronic supplementary material

ESM 1

(DOCX 959 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bieg, C., McCann, K.S. & Fryxell, J.M. The dynamical implications of human behaviour on a social-ecological harvesting model. Theor Ecol 10, 341–354 (2017). https://doi.org/10.1007/s12080-017-0334-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-017-0334-3

Keywords

Navigation