Skip to main content

Advertisement

Log in

Chaotic attractor in two-prey one-predator system originates from interplay of limit cycles

  • ORIGINAL PAPER
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

We investigate the appearance of chaos in a microbial 3-species model motivated by a potentially chaotic real world system (as characterized by positive Lyapunov exponents (Becks et al., Nature 435, 2005). This is the first quantitative model that simulates characteristic population dynamics in the system. A striking feature of the experiment was three consecutive regimes of limit cycles, chaotic dynamics and a fixed point. Our model reproduces this pattern. Numerical simulations of the system reveal the presence of a chaotic attractor in the intermediate parameter window between two regimes of periodic coexistence (stable limit cycles). In particular, this intermediate structure can be explained by competition between the two distinct periodic dynamics. It provides the basis for stable coexistence of all three species: environmental perturbations may result in huge fluctuations in species abundances, however, the system at large tolerates those perturbations in the sense that the population abundances quickly fall back onto the chaotic attractor manifold and the system remains. This mechanism explains how chaos helps the system to persist and stabilize against migration. In discrete populations, fluctuations can push the system towards extinction of one or more species. The chaotic attractor protects the system and extinction times scale exponentially with system size in the same way as with limit cycles or in a stable situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armstrong RA, McGehee R (1976) Coexistence of species competing for shared resources. Theor Popul Biol 9(3):317 –328

    Article  CAS  PubMed  Google Scholar 

  • Becks L, Hilker FM, Malchow H, Jurgens K, Arndt H (2005) Experimental demonstration of chaos in a microbial food web. Nature 435:1226–1229

    Article  CAS  PubMed  Google Scholar 

  • Benincà EE, Huisman J, Heerkloss R, Johnk KD, Branco P, Van Nes EH, Scheffer M, Ellner SP (2008) Chaos in a long-term experiment with a plankton community. Nature 451(7180):822–825

  • Bohannan BJM, Lenski RE (1999) Effect of prey heterogeneity on the response of a model food chain to resource enrichment. Am Nat 153(1):73–82

    Article  Google Scholar 

  • Caswell H, Neubert MG, Hunter CM (2011) Demography and dispersal: invasion speeds and sensitivity analysis in periodic and stochastic environments. Theoretical Ecology 4(4):407–421

    Article  Google Scholar 

  • Costantino RF, Desharnais RA, Cushing JM, Dennis B (1997) Chaotic dynamics in an insect population. Science 275(5298):389–391

    Article  CAS  PubMed  Google Scholar 

  • Dennis B, Desharnais R, Cushing J, Costantino R (1997) Transitions in population dynamics: Equilibria to periodic cycles to aperiodic cycles. J Anim Ecol 66(5):704–729

    Article  Google Scholar 

  • Domis LNDS, Mooij WM, Huisman J (2007) Climate-induced shifts in an experimental phytoplankton community: a mechanistic approach. Hydrobiologia 584(1):403–413

    Article  Google Scholar 

  • Fussmann GF, Ellner SP, Shertzer KW, Hairston NG Jr (2000) Crossing the hopf bifurcation in a live predator-prey system. Science 290(5495):1358–1360

    Article  CAS  PubMed  Google Scholar 

  • Gakkhar S, Naji RK (2005) Order and chaos in a food web consisting of a predator and two independent preys. Commun Nonlinear Sci Numer Simul 10(2):105 –120

    Article  Google Scholar 

  • Gause GF (1934) The struggle for existence. The Williams & Wilkins company, Baltimore

    Book  Google Scholar 

  • Gibson WT, Wilson WG (2013) Individual-based chaos: extensions of the discrete logistic model. J Theor Biol 339:84–92

    Article  PubMed  Google Scholar 

  • Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22(4):403 –434

    Article  CAS  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25):2340–2361

    Article  CAS  Google Scholar 

  • Gilpin ME (1979) Spiral chaos in a predator-prey model. Am Nat 113(2):306–308

    Article  Google Scholar 

  • Hastings A, Powell T (1991) Chaos in a three-species food chain. Ecol 72(3):896–903

    Article  Google Scholar 

  • Holling CS (1959) The components of predation as revealed by a study of small-mammal predation of the european pine sawfly. The Canadian Entomologist 91(05):293–320

    Article  Google Scholar 

  • Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations and chaos. Nature 402 (6760):407–410

    Article  Google Scholar 

  • Jost JL, Drake JF, Fredrickson AG, Tsuchiya HM (1973) Interactions of tetrahymena pyriformis, escherichia coli, azotobacter vinelandii, and glucose in a minimal medium. J Bacteriol 113(2):834–840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klebanoff A, Hastings A (1994) Chaos in one-predator, two-prey models: general results from bifurcation theory. Math Biosci 122(2):221–233

    Article  CAS  PubMed  Google Scholar 

  • Koch AL (1974) Competitive coexistence of two predators utilizing the same prey under constant environmental conditions. J Theor Biol 44(2):387 –395

    Article  CAS  PubMed  Google Scholar 

  • Kooi B, Boer MP (2003) Chaotic behaviour of a predator?prey system in the chemostat. Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Applications and Algorithms 10(2):259– 272

    Google Scholar 

  • Křivan V, Eisner J (2006) The effect of the holling type ii functional response on apparent competition. Theor Popul Biol 70(4):421–430

    Article  PubMed  Google Scholar 

  • Laakso J, Löytynoja K, Kaitala V (2003) Environmental noise and population dynamics of the ciliated protozoa tetrahymena thermophila in aquatic microcosms. Oikos 102(3):663– 671

    Article  Google Scholar 

  • Leibold MA (1996) A graphical model of keystone predators in food webs: trophic regulation of abundance, incidence, and diversity patterns in communities. Am Nat:784–812

  • Levin BR, Stewart FM, Chao L (1977) Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage. Am Nat 111:3–24

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20(2):130–141

    Article  Google Scholar 

  • Lotka AJ (1925) Elements of physical biology. Williams and Wilkins, Baltimore

    Google Scholar 

  • May RM, Leonard WJ (1975) Nonlinear aspects of competition between three species. SIAM J Appl Math 29(2):243–253

    Article  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394

    Article  CAS  Google Scholar 

  • Nomdedeu MM (2010) Influence of temperature on the complex dynamic behaviour of a microbial food web, PhD thesis. Universität zu Köln

  • Rössler O E (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398

    Article  Google Scholar 

  • Shelton AO, Mangel M (2011) Fluctuations of fish populations and the magnifying effects of fishing. In: Proceedings of the National Academy of Sciences, vol 108, pp 7075–7080

  • Sprengel C (1831) Chemie für Landwirthe, forstmänner und Cameralisten. No. Bd 1 in Chemie für Landwirthe. Vandenhoek U. Ruprecht, Forstmänner und Cameralisten

  • Sugihara G, Beddington J, Hsieh C h, Deyle E, Fogarty M, Glaser SM, Hewitt R, Hollowed A, May RM, Munch SB et al (2011) Are exploited fish populations stable?. In: Proceedings of the National Academy of Sciences, vol 108, pp E1224–E1225

  • Takeuchi Y, Adachi N (1983) Existence and bifurcation of stable equilibrium in two-prey, one-predator communities. Bull Math Biol 45(6):877 –900

    Article  Google Scholar 

  • Traulsen A, Claussen JC, Hauert C (2012) Stochastic differential equations for evolutionary dynamics with demographic noise and mutations. Phys Rev E 85(4):041,901

    Article  Google Scholar 

  • Turchin P (2003) Complex population dynamics: a theoretical/ empirical synthesis, vol 35. Princeton University Press

  • Vance RR (1978) Predation and resource partitioning in one predator—two prey model communities. Am Nat 112(987):797–813

    Article  Google Scholar 

  • Vayenas DV, Pavlou S (1999) Chaotic dynamics of a food web in a chemostat. Math Biosci 162(1-2):69–84

    Article  CAS  PubMed  Google Scholar 

  • Volterra V (1928) Variations and fluctuations of the number of individuals in animal species living together. J Conseil 3(1):3–51

    Article  Google Scholar 

  • von Liebig JF (1840) Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie,Vieweg

  • Zicarelli JD (1975) Mathematical analysis of a population model with several predators on a single prey, PhD thesis. University of Minnesota

Download references

Acknowledgments

We thank Lutz Becks for useful discussion and helpful comments. Funding was provided by SFB TR12 of the Deutsche Forschungsgemeinschaft (AA, FG) and by SPP 1162 (AR 288/14) and SPP 1374 (AR 288/16) of the Deutsche Forschungsgemeinschaft (HA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanny Groll.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groll, F., Arndt, H. & Altland, A. Chaotic attractor in two-prey one-predator system originates from interplay of limit cycles. Theor Ecol 10, 147–154 (2017). https://doi.org/10.1007/s12080-016-0317-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-016-0317-9

Keywords

Navigation