Skip to main content

Advertisement

Log in

Phenologically explicit models for studying plant–pollinator interactions under climate change

  • ORIGINAL PAPER
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Climate change is significantly influencing phenology. One potential effect is that historically interacting partners will respond to climate change at different rates, creating the potential for a phenological mismatch among previously synchronized interacting species, or even sexes of the same species. Focusing on plant demographics in a plant–pollinator interaction, we develop a hybrid dynamical model that uses a “non-autonomous” differential equation system (Zonneveld model) for within-season dynamics and discrete equations for season-to-season dynamics. Our model outlines how and when changes in the relative phenologies of an interacting species pair will alter the demographic outcome of the interaction. For our plant–pollinator system, we find that plant population growth rates are particularly sensitive to phenology mismatch when flowers are short-lived, when pollinators are short-lived, or when flowers and pollinators exhibit high levels of within-population synchrony in emergence or arrival dates. More generally, our aim is to introduce the use of hybrid dynamical models as a framework through which researchers can directly explore the demographic consequences of climatically driven phenological change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alarcón R, Waser NM, Ollerton J (2008) Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117(12):1796–1807. doi:10.1111/j.0030-1299.2008.16987.x

    Article  Google Scholar 

  • Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci 100(16):9383–9387. doi:10.1073/pnas.1633576100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441 (7089):81–83

    Google Scholar 

  • Calabrese JM, Fagan WF (2004) Lost in time, lonely, and single: reproductive asynchrony and the Allee effect. Am Nat 164(1):25–37. doi:10.1086/421443

    Article  PubMed  Google Scholar 

  • Calabrese JM, Ries L, Matter SF, Debinski DM, Auckland JN, Roland J, Fagan WF (2008) Reproductive asynchrony in natural butterfly populations and its consequences for female matelessness. J Anim Ecol 77(4):746–756. doi:10.1111/j.1365-2656.2008.01385.x

    Article  PubMed  Google Scholar 

  • Doi H, Gordo O, Katano I (2008) Heterogeneous intra-annual climatic changes drive different phenological responses at two trophic levels. Climate Res 36(3):181

    Article  Google Scholar 

  • Dupont YL, Padrón B, Olesen JM, Petanidou T (2009) Spatio‐temporal variation in the structure of pollination networks. Oikos 118(8):1261–1269

    Article  Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430(7002):881–884

    Google Scholar 

  • Encinas-Viso F, Revilla TA, Etienne RS (2012) Phenology drives mutualistic network structure and diversity. Ecol Lett 15(3):198–208. doi:10.1111/j.1461-0248.2011.01726.x

    Article  PubMed  Google Scholar 

  • Fagan WF, Cosner C, Larsen EA, Calabrese JM (2010) Reproductive asynchrony in spatial population models: how mating behavior can modulate Allee effects arising from isolation in both space and time. Am Nat 175(3):362–373

    Article  PubMed  Google Scholar 

  • Forrest J, Inouye DW, Thomson JD (2010) Flowering phenology in subalpine meadows: does climate variation influence community co-flowering patterns? Ecology 91(2):431–440. doi:10.1890/09-0099.1

    Article  PubMed  Google Scholar 

  • Forrest JRK, Thomson JD (2011) An examination of synchrony between insect emergence and flowering in Rocky Mountain meadows. Ecol Monogr 81(3):469–491. doi:10.1890/10-1885.1

    Article  Google Scholar 

  • Gates DJ, Nason JD (2012) Flowering asynchrony and mating system effects on reproductive assurance and mutualism persistence in fragmented fig–fig wasp populations. Am J Bot 99(4):757–768. doi:10.3732/ajb.1100472

    Article  PubMed  Google Scholar 

  • Gilman RT, Fabina NS, Abbott KC, Rafferty NE (2012) Evolution of plant–pollinator mutualisms in response to climate change. Evol Appl 5(1):2–16. doi:10.1111/j.1752-4571.2011.00202.x

    Article  PubMed Central  Google Scholar 

  • Harder LD, Johnson SD (2005) Adaptive plasticity of floral display size in animal-pollinated plants. Proc R Soc B Biol Sci 272(1581):2651–2657

    Article  Google Scholar 

  • Hedhly A, Hormaza JI, Herrero M (2009) Global warming and sexual plant reproduction. Trends Plant Sci 14(1):30–36. doi:10.1016/j.tplants.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  • Hill JK, Hodkinson ID (1995) Effects of temperature on phenological synchrony and altitudinal distribution of jumping plant lice (Hemiptera: Psylloidea) on dwarf willow (Salix lapponum) in Norway. Ecol Entomol 20(3):237–244. doi:10.1111/j.1365-2311.1995.tb00453.x

    Article  Google Scholar 

  • Iler AM, Inouye DW (2013) Increasing temporal synchrony between syrphid flies and their floral resources despite differential phenological responses to climate change. Global Change Biology. In press

  • Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89(2):353–362. doi:10.1890/06-2128.1

    Article  PubMed  Google Scholar 

  • Johansson J, Smallegange IM, Jonzén N (2012) An eco-evolutionary model for demographic and phenological responses in migratory birds. Biology 1(3):639–657

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones MH, MacDonald SE, Henry GHR (1999) Sex- and habitat-specific responses of a high arctic willow, Salix arctica, to experimental climate change. Oikos 87(1):129–138. doi:10.2307/3547004

    Article  Google Scholar 

  • Kula AR (2012) Quantifying context-dependent outcomes of the interaction between Silene stellata (Caryophyllaceae) and its pollinating seed predator, Hadena ectypa (Noctuidae), a potential mutualist.

  • Larsen E, Calabrese JM, Rhainds M, Fagan WF (2013) How protandry and protogyny affect female mating failure: a spatial population model. Entomologia Experimentalis et Applicata 146(1):130–140. doi:10.1111/eea.12003

    Article  Google Scholar 

  • Lynch HJ, Rhainds M, Calabrese JM, Cantrell S, Cosner C, Fagan WF (2013) How climate extremes-not means-define a species’ geographic range boundary via a demographic tipping point. Ecological Monographs

  • Mailleret L, Lemesle V (2009) A note on semi-discrete modelling in the life sciences. Philos Trans R Soc A Math Phys Eng Sci 367(1908):4779–4799

    Article  Google Scholar 

  • McKinney AM, CaraDonna PJ, Inouye DW, Barr B, Bertelsen CD, Waser NM (2012) Asynchronous changes in phenology of migrating broad-tailed hummingbirds and their early-season nectar resources. Ecology 93(9):1987–1993

    Article  PubMed  Google Scholar 

  • Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant–pollinator interactions. Ecol Lett 10(8):710–717. doi:10.1111/j.1461-0248.2007.01061.x

    Article  PubMed  Google Scholar 

  • Miller-Rushing AJ, Høye TT, Inouye DW, Post E (2010) The effects of phenological mismatches on demography. Philos Trans Royal Soc B: Biol Sci 365(1555):3177–3186. doi:10.1098/rstb.2010.0148

    Article  Google Scholar 

  • Minckley R (2008) Faunal composition and species richness differences of bees (Hymenoptera: Apiformes) from two north American regions. Apidologie 39(1):176–188

    Article  Google Scholar 

  • Moraes PLRD, Monteiro R, Vencovsky R (1999) Conservação genética de populações de Cryptocarya moschata Nees (Lauraceae) na Mata Atlântica do estado de São Paulo. Revista brasileira de Botânica 22 22(Suppl 2):237–248

    Google Scholar 

  • Nakazawa T, Doi H (2012) A perspective on match/mismatch of phenology in community contexts. Oikos 121(4):489–495. doi:10.1111/j.1600-0706.2011.20171.x

    Article  Google Scholar 

  • Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Chang Biol 13(9):1860–1872. doi:10.1111/j.1365-2486.2007.01404.x

    Article  Google Scholar 

  • Post E, Forchhammer MC, Stenseth NC, Callaghan TV (2001a) The timing of life—history events in a changing climate. Proc R Soc Lond Ser B Biol Sci 268(1462):15–23

    Article  CAS  Google Scholar 

  • Post E, Levin SA, Iwasa Y, Stenseth NC (2001b) Reproductive asynchrony increases with environmental disturbance. Evolution 55(4):830–834

    Article  CAS  PubMed  Google Scholar 

  • Primack RB (1985) Longevity of individual flowers. Annu Rev Ecol Syst 16:15–37. doi:10.2307/2097041

    Article  Google Scholar 

  • Rafferty NE, Ives AR (2011a) Effects of experimental shifts in flowering phenology on plant–pollinator interactions. Ecol Lett 14(1):69–74. doi:10.1111/j.1461-0248.2010.01557.x

    Article  PubMed  Google Scholar 

  • Rafferty NE, Ives AR (2011b) Pollinator effectiveness varies with experimental shifts in flowering time. Ecology 93(4):803–814. doi:10.1890/11-0967.1

    Article  Google Scholar 

  • Rathcke B (1983) Competition and facilitation among plants for pollination. Pollination biology: 305-329

  • Rathcke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Annu Rev Ecol Syst 16:179–214. doi:10.2307/2097047

    Article  Google Scholar 

  • Rodriguez J, Jordano D, Haeger JF (1994) Spatial heterogeneity in a butterfly-host plant interaction. Journal of Animal Ecology:31-38

  • Rudolf VH, Singh M (2013) Disentangling climate change effects on species interactions: effects of temperature, phenological shifts, and body size. Oecologia:1-10

  • Russell FL, Louda S (2004) Phenological synchrony affects interaction strength of an exotic weevil with Platte thistle, a native host plant. Oecologia 139(4):525–534. doi:10.1007/s00442-004-1543-1

    Article  Google Scholar 

  • Schleuning M, Fründ J, Klein A-M, Abrahamczyk S, Alarcón R, Albrecht M, Andersson GK, Bazarian S, Böhning-Gaese K, Bommarco R (2012) Specialization of mutualistic interaction networks decreases toward tropical latitudes. Current Biology

  • Schlindwein C, Wittmann D (1997) Stamen movements in flowers of Opuntia (Cactaceae) favour oligolectic pollinators. PI Syst Evol 204(3–4):179–193. doi:10.1007/bf00989204

    Article  Google Scholar 

  • Schwartz MD, Hanes JM (2010) Intercomparing multiple measures of the onset of spring in eastern North America. Int J Climatol 30(11):1614–1626. doi:10.1002/joc.2008

    Article  Google Scholar 

  • Sheriff MJ, Kenagy GJ, Richter M, Lee T, Tøien Ø, Kohl F, Buck CL, Barnes BM (2011) Phenological variation in annual timing of hibernation and breeding in nearby populations of Arctic ground squirrels. Proc R Soc B Biol Sci 278(1716):2369–2375. doi:10.1098/rspb.2010.2482

    Article  Google Scholar 

  • Sherry RA, Zhou X, Gu S, Arnone JA, Schimel DS, Verburg PS, Wallace LL, Luo Y (2007) Divergence of reproductive phenology under climate warming. Proc Natl Acad Sci 104(1):198–202. doi:10.1073/pnas.0605642104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson RM, Beardall J, Beringer J, Grace M, Sardina P (2013) Means and extremes: building variability into community-level climate change experiments. Ecol Lett 16(6):799–806. doi:10.1111/ele.12095

    Article  PubMed  Google Scholar 

  • Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. Proc R Soc B Biol Sci 272(1581):2561–2569. doi:10.1098/rspb.2005.3356

    Article  Google Scholar 

  • Visser ME, Holleman LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc R Soc Lond Ser B Biol Sci 268(1464):289–294. doi:10.1098/rspb.2000.1363

    Article  CAS  Google Scholar 

  • Visser ME, Noordwijk AJV, Tinbergen JM, Lessells CM (1998) Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc R Soc Lond Ser B Biol Sci 265(1408):1867–1870. doi:10.1098/rspb.1998.0514

    Article  Google Scholar 

  • Zipkin EF, Ries L, Reeves R, Regetz J, Oberhauser KS (2012) Tracking climate impacts on the migratory monarch butterfly. Glob Chang Biol 18(10):3039–3049. doi:10.1111/j.1365-2486.2012.02751.x

    Article  Google Scholar 

  • Zonneveld C (1992) Polyandry and protandry in butterflies. Bull Math Biol 54(6):957–976

    Article  Google Scholar 

  • Zonneveld C, Metz J (1991) Models on butterfly protandry: virgin females are at risk to die. Theoret Pop Biol 40(3):308–321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the US National Science Foundation under grants DMS-1118623 (RSC and GCC) and DMS-1225917 (WFF) and the Coordenação de Aperfeiçoamento de Pessoal de nível Superior (CAPES) grant BEX 8971/11-0 (IGV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. Fagan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.15 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fagan, W.F., Bewick, S., Cantrell, S. et al. Phenologically explicit models for studying plant–pollinator interactions under climate change. Theor Ecol 7, 289–297 (2014). https://doi.org/10.1007/s12080-014-0218-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-014-0218-8

Keywords

Navigation