Skip to main content
Log in

A general mathematical framework for the analysis of spatiotemporal point processes

  • ORIGINAL PAPER
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Spatial and stochastic models are often straightforward to simulate but difficult to analyze mathematically. Most of the mathematical methods available for nonlinear stochastic and spatial models are based on heuristic rather than mathematically justified assumptions, so that, e.g., the choice of the moment closure can be considered more of an art than a science. In this paper, we build on recent developments in specific branch of probability theory, Markov evolutions in the space of locally finite configurations, to develop a mathematically rigorous and practical framework that we expect to be widely applicable for theoretical ecology. In particular, we show how spatial moment equations of all orders can be systematically derived from the underlying individual-based assumptions. Further, as a new mathematical development, we go beyond mean-field theory by discussing how spatial moment equations can be perturbatively expanded around the mean-field model. While we have suggested such a perturbation expansion in our previous research, the present paper gives a rigorous mathematical justification. In addition to bringing mathematical rigor, the application of the mathematically well-established framework of Markov evolutions allows one to derive perturbation expansions in a transparent and systematic manner, which we hope will facilitate the application of the methods in theoretical ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albeverio S, Kondratiev YG, Röckner M (1998) Analysis and geometry on configuration spaces. J Funct Anal 154(2):444–500

    Article  Google Scholar 

  • Baddeley A (2010) Multivariate and marked point processes. Handbook of spatial statistics

  • Baddeley A, Turner R (2005) spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12(6):1–42

    Google Scholar 

  • Barraquand F, Murrell DJ (2013) Scaling up predator-prey dynamics using spatial moment equations. Methods Ecol Evol 4(3):276–289

    Article  Google Scholar 

  • Berec L (2002) Techniques of spatially explicit individual-based models: construction, simulation, and mean-field analysis. Ecol Model 150(1–2):55–81

    Article  Google Scholar 

  • Bolker BM (2004) Continuous-space models for population dynamics. In: Hanski I, Gaggiotti O (eds) Ecology, genetics, and evolution in metapopulations. Academic, New York, pp 45–69

    Chapter  Google Scholar 

  • Bolker B, Pacala SW (1997) Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor Popul Biol 52(3):179–197

    Article  PubMed  Google Scholar 

  • Cantrell S, Cosner C (2003) Spatial ecology via reaction-diffusion equations. Wiley, New York

    Google Scholar 

  • Cantrell S, Cosner C, Ruan S (2010) Spatial ecology. Mathematical and computational biology series. Chapman and Hall/CRC, New York

    Google Scholar 

  • Chesson P (2012) Scale transition theory: its aims, motivations and predictions. Ecol Complex 10:52–68

    Article  Google Scholar 

  • Cornell SJ, Ovaskainen O (2008) Exact asymptotic analysis for metapopulation dynamics on correlated dynamic landscapes. Theor Popul Biol 74(3):209–225

    Article  PubMed  Google Scholar 

  • Dieckmann U, Law R, Metz JAJ (2000) The geometry of ecological interactions: simplifying spatial complexity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dodd PJ, Ferguson NM (2009) A many-body field theory approach to stochastic models in population biology. Plos One 4(9). doi:10.1371/journal.pone.0006855

  • Durrett R, Levin S (1994) The importance of being discrete (and spatial). Theor Popul Biol 46(3):363–394

    Article  Google Scholar 

  • Ellner SP (2001) Pair approximation for lattice models with multiple interaction scales. J Theor Biol 210(4):435–447

    Article  CAS  PubMed  Google Scholar 

  • Filipe JAN, Gibson GJ (2001) Comparing approximations to spatio-temporal models for epidemics with local spread. Bull Math Biol 63(4):603–624

    Article  CAS  PubMed  Google Scholar 

  • Finkelshtein DL, Kondratiev YG, Oliveira MJ (2009) Markov evolutions and hierarchical equations in the continuum. I: one-component systems. J Evol Equ 9(2):197–233

    Article  Google Scholar 

  • Finkelshtein D, Kondratiev Y, Kutoviy O (2010) Vlasov scaling for stochastic dynamics of continuous systems. J Stat Phys 141(1):158–178

    Article  Google Scholar 

  • Finkelshtein D, Kondratiev Y, Kutoviy O (2011) Vlasov scaling for the Glauber dynamics in continuum. Infinite Dimensional Analysis Quantum Probability and Related Topics 14(4):537– 569

    Article  Google Scholar 

  • Finkelshtein D, Kondratiev Y, Kutoviy O (2012) Semigroup approach to birth-and-death stochastic dynamics in continuum. J Funct Anal 262(3):1274–1308

    Article  Google Scholar 

  • Finkelshtein D, Kondratiev Y, Kozitsky Y (2013) Glauber dynamics in continuum: a constructive approach to evolution of states. Discrete and Continuous Dynamical Systems 33(4):1431– 1450

    Article  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical-reactions. J Phys Chem 81(25):2340–2361

    Article  CAS  Google Scholar 

  • Grimm V, Railsback SF (2005) Individual-based modelling and ecology. Princeton University Press, Princeton

    Google Scholar 

  • Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz SK, Huse G, Huth A, Jepsen JU, Jorgensen C, Mooij WM, Mueller B, Pe’er G, Piou C, Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Rueger N, Strand E, Souissi S, Stillman RA, Vabo R, Visser U, DeAngelis DL (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198(1–2):115–126

    Article  Google Scholar 

  • Gurarie E, Ovaskainen O (2013) Towards a general formalization of encounter rates in ecology. Theor Ecol 6:189–202

    Google Scholar 

  • Haase P (1995) Spatial pattern-analysis in ecology based on Ripley K-function—introduction and methods of edge correction. J Veg Sci 6(4):575–582

    Article  Google Scholar 

  • Hanski I, Gaggiotti O (2004) Ecology, genetics, and evolution in metapopulations. Academic, New York

    Google Scholar 

  • Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404(6779):755–758

    Article  CAS  PubMed  Google Scholar 

  • Hiebeler D (2000) Populations on fragmented landscapes with spatially structured heterogeneities: landscape generation and local dispersal. Ecology 81(6):1629–1641

    Article  Google Scholar 

  • Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Statistics in practice. Wiley, Chichester

    Google Scholar 

  • Illian JB, Sorbye SH, Rue H (2012) A toolbox for fitting complex spatial point process models using integrated nested Laplace approximation (INLA). Ann Appl Stat 6(4):1499–1530

    Article  Google Scholar 

  • Iwasa Y, Andreasen V, Levin S (1987) Aggregation in model-ecosystems. 1. Perfect aggregation. Ecol Model 37(3–4):287–302

    Article  Google Scholar 

  • Keeling MJ (2000) Multiplicative moments and measures of persistence in ecology. J Theor Biol 205(2):269–281

    Article  CAS  PubMed  Google Scholar 

  • Keeling MJ, Rand DA, Morris AJ (1997) Correlation models for childhood epidemics. Proc R Soc Lond Ser B Biol Sci 264(1385):1149–1156

    Article  CAS  Google Scholar 

  • Kondratiev YG, Kuna T (2002) Harmonic analysis on configuration space - I. General theory. Infinite Dimensional Analysis Quantum Probability and Related Topics 5(2):201–233

    Article  Google Scholar 

  • Kondratiev Y, Skorokhod A (2006) On contact processes in continuum. Infinite Dimensional Analysis Quantum Probability and Related Topics 9(2):187–198

    Article  Google Scholar 

  • Kondratiev YG, Kuna T, Oliveira MJ (2006a) Holomorphic Bogoliubov functionals for interacting particle systems in continuum. J Funct Anal 238(2):375–404

    Article  Google Scholar 

  • Kondratiev YG, Kutoviy OV, Zhizhina E (2006b) Nonequilibrium Glauber-type dynamics in continuum. J Math Phys 47(11)

  • Kondratiev Y, Kutoviy O, Minlos R (2008a) On non-equilibrium stochastic dynamics for interacting particle systems in continuum. J Funct Anal 255(1):200–227

    Article  Google Scholar 

  • Kondratiev Y, Kutoviy O, Pirogov S (2008b) Correlation functions and invariant measures in continuous contact model. Infinite Dimensional Analysis Quantum Probability and Related Topics 11(2):231–258

    Article  Google Scholar 

  • Kondratiev Y, Kutoviy O, Minlos R (2010) Ergodicity of non-equilibrium Glauber dynamics in continuum. J Funct Anal 258(9):3097–3116

    Article  Google Scholar 

  • Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77(7):2027–2042

    Article  Google Scholar 

  • Law R, Murrell DJ, Dieckmann U (2003) Population growth in space and time: spatial logistic equations. Ecology 84(1):252–262

    Article  Google Scholar 

  • Law R, Illian J, Burslem DFRP, Gratzer G, Gunatilleke CVS, Gunatilleke IAUN (2009) Ecological information from spatial patterns of plants: insights from point process theory. J Ecol 97(4):616–628

    Article  Google Scholar 

  • Levermore CD (1996) Moment closure hierarchies for kinetic theories. J Stat Phys 83(5–6):1021–1065

    Article  Google Scholar 

  • Marion G, Mao XR, Renshaw E, Liu JL (2002) Spatial heterogeneity and the stability of reaction states in autocatalysis. Phys Rev E 66(5):051915

    Article  Google Scholar 

  • Matsuda H, Ogita N, Sasaki A, Sato K (1992) Statistical-mechanics of population—the lattice Lotka-Volterra model. Prog Theor Phys 88(6):1035–1049

    Article  Google Scholar 

  • Morozov A, Poggiale J-C (2012) From spatially explicit ecological models to mean-field dynamics: the state of the art and perspectives. Ecol Complex 10:1–11

    Article  Google Scholar 

  • Murrell DJ, Law R (2003) Heteromyopia and the spatial coexistence of similar competitors. Ecol Lett 6(1):48–59

    Article  Google Scholar 

  • Murrell DJ, Dieckmann U, Law R (2004) On moment closures for population dynamics in continuous space. J Theor Biol 229(3):421–432

    Article  PubMed  Google Scholar 

  • North A, Ovaskainen O (2007) Interactions between dispersal, competition, and landscape heterogeneity. Oikos 116:1106–1119

    Article  Google Scholar 

  • North A, Cornell S, Ovaskainen O (2011a) Evolutionary responses of dispersal distance to landscape structure and habitat loss. Evolution 65(6):1739–1751

    Article  Google Scholar 

  • North A, Pennanen J, Ovaskainen O, Laine A-L (2011b) Local adaptation in a changing world: the roles of gene-flow, mutation, and sexual reproduction. Evolution 65:79–89

    Article  Google Scholar 

  • O’Dwyer JP, Green JL (2010) Field theory for biogeography: a spatially explicit model for predicting patterns of biodiversity. Ecol Lett 13(1):87–95

    Article  PubMed Central  PubMed  Google Scholar 

  • Okubo A, Levin SA (2001) Diffusion and ecological problems: modern perspectives. Interdisciplinary applied mathematics. Springer-Verlag, New York

    Book  Google Scholar 

  • Ovaskainen O, Cornell SJ (2006a) Asymptotically exact analysis of stochastic metapopulation dynamics with explicit spatial structure. Theor Popul Biol 69:13–33

    Article  Google Scholar 

  • Ovaskainen O, Cornell SJ (2006b) Space and stochasticity in population dynamics. PNAS 103:12781–12786

    Article  CAS  Google Scholar 

  • Penttinen A, Stoyan D, Henttonen HM (1992) Marked point-processes in forest statistics. For Sci 38(4):806–824

    Google Scholar 

  • Presutti E (2009) Scaling limits in statistical mechanics and microstructures in continuum mechanics. Theoretical and mathematical physics. Springer, Berlin

    Google Scholar 

  • Ruelle D (1964) Cluster property of the correlation functions of classical gases. Rev Mod Phys 35:580–584

    Article  Google Scholar 

  • Ruelle D (1969) Statistical mechanics. Rigorous results. Benjamins, New York

    Google Scholar 

  • Shimatani K (2002) Point processes for fine-scale spatial genetics and molecular ecology. Biom J 44(3):325–352

    Article  Google Scholar 

  • Thompson HR (1955) Spatial point processes, with applications to ecology. Biometrika 42(1–2):102–115

    Google Scholar 

Download references

Acknowledgments

The authors thank the Center for Interdisciplinary Research (ZIF) in Bielefeld, Germany for the possibility for organizing an International Research Programme in Mathematical Biology in 2012–2013. This work greatly benefited from the interactions during the Research Programme. Two anonymous reviewers are acknowledged for providing helpful comments. The study was supported financially by the Academy of Finland (grant no. 250444 to O.O) and the European Research Council (ERC starting grant no. 205905 to O.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otso Ovaskainen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 357 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovaskainen, O., Finkelshtein, D., Kutoviy, O. et al. A general mathematical framework for the analysis of spatiotemporal point processes. Theor Ecol 7, 101–113 (2014). https://doi.org/10.1007/s12080-013-0202-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-013-0202-8

Keywords

Navigation