Skip to main content
Log in

Update on the role of molecular factors and fibroblasts in the pathogenesis of Dupuytren’s disease

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

The mechanism by which the fibroblast is able to trigger palmar fibromatosis is still not yet fully understood. It would appear certain that the “abnormal” fibroblasts continuously synthesise profibrotic cytokines which are able to determine the activation to myofibroblasts, to stimulate them to the further proliferation and synthesis of other cytokines, to modify the cells’ differentiation and ultrastructural characteristics, as well as the production of matrix and other proteins. Several fibroblast growth factors have been suggested to be responsible of an abnormal cell activation with an aberrantly elevated collagen synthesis and extracellular deposition in Dupuytren’s disease, as TGF-Beta, TNF-Alfa, PDGF, GM-CSF, free radicals, metalloproteinases, sex hormones, gene modified expression, mechanical stimulation. The Authors review the current state of knowledge in the field, by analyzing the role of these cytokines in the palmar fibromatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alman BA, Greel DA, Ruby LK, Goldberg MJ, Wolfe HJ (1996) Regulation of proliferation and platelet-derived growth factor expression in palmar fibromatosis (Dupuytren contracture) by mechanical strain. J Orthop Res 14(5):722–728

    Article  CAS  PubMed  Google Scholar 

  • Arora R, Kaiser P, Kastenberger TJ, Schmiedle G, Erhart S, Gabl M (2016) Injectable collagenase Clostridium histolyticum as a nonsurgical treatment for Dupuytren’s disease. Oper Orthop Traumatol 28:30–37

    Article  CAS  PubMed  Google Scholar 

  • Augoff K, Ratajczak K, Gosk J, Tabola R, Rutowski R (2006) Gelatinase A activity in Dupuytren’s disease. J Hand Surg [Am] 31(10):1635–1639

    Article  Google Scholar 

  • Badalamente MA, Sampson SP, Hurst LC, Dowd A, Miyasaka K (1996) The role of transforming growth factor beta in Dupuytren’s disease. J Hand Surg [Am] 21(2):210–215

    Article  CAS  Google Scholar 

  • Bailey AJ, Tarlton JF, Van der Stappen J, Sims TJ, Messina A (1994) The continuous elongation technique for severe Dupuytren’s disease: a biochemical mechanism. J Hand Surg [Am] 19:522–527

    Article  CAS  Google Scholar 

  • Bayat A, Alansar A, Hajeer HA, Shah M, Watson JS, Stanley JK, Ferguson MW, Ollier WE (2002a) Genetic susceptibility in Dupuytren’s disease: lack of association of a novel transforming growth factor B2 polymorphism in Dupuytren’s disease. J Hand Surg (Br) 27(1):47–49

    Article  CAS  Google Scholar 

  • Bayat A, Watson JS, Stanley JK, Alansari A, Shah M, Ferguson MW, Ollier WE (2002b) Genetic susceptibility in Dupuytren’s disease. TGF-beta1 polymorphisms and Dupuytren’s disease. J Bone Joint Surg (Br) 84(2):211–215

    Article  CAS  Google Scholar 

  • Bayat A, Stanley JK, Watson JS, Ferguson MW, Ollier WE (2003) Genetic susceptibility to Dupuytren’s disease: transforming growth factor beta receptor (TGFbetaR) gene polymorphisms and Dupuytren’s disease. Br J Plast Surg 56(4):328–333

    Article  CAS  PubMed  Google Scholar 

  • Bazin S, Le Lous M, VC D (1980) Biochemistry and histology of the connective tissue of Dupuytren’s disease lesion. Eur J Clin Invest 10:166–171

    Article  Google Scholar 

  • Bernard M, Dieudé M, Yang B, Hamelin K, Underwood K, Hébert MJ (2014) Autophagy fosters myofibroblast differentiation through MTORC2 activation and downstream upregulation of CTGF. Autophagy 10(12):2193–2207

    Article  CAS  PubMed  Google Scholar 

  • Berndt A, Kosmehl H, Katenkamp D, Tauchmann V (1994) Appearance of the myofibroblastic phenotype in Dupuytren’s disease is associated with a fibronectin, laminin, collagen type IV and tenascin extracellular matrix. Pathobiology 62:55–58

    Article  CAS  PubMed  Google Scholar 

  • Bertheim U, Hellström S (1994) The distribution of hyaluronan in human skin and mature, hypertrophic meloi scars. Br J Plast Surg 47:483–489

    Article  CAS  PubMed  Google Scholar 

  • Bisson MA, McGrouther DA, Mudera V, Grobbelaar AO (2003) The different characteristics of Dupuytren’s disease fibroblasts derived from either nodule or cord: expression of alpha-smooth muscle actin and the response to stimulation by TGF-beta1. J Hand Surg (Br) 28:351–356

    Article  CAS  Google Scholar 

  • Bisson MA, Mudera V, McGrouther DA, Grobbelaar AO (2004) The contractile properties and responses to tensional loading of Dupuytren’s disease-derived fibroblasts are altered: a cause of the contracture? Plast Reconstr Surg 113(2):611–621

    Article  PubMed  Google Scholar 

  • Bisson MA, Beckett KS, McGrouther DA, Grobbelaar AO, Mudera V (2009) Transforming growth factor-beta1 stimulation enhances Dupuytren’s fibroblast contraction in response to uniaxial mechanical load within a 3-dimensional collagen gel. J Hand Surg [Am] 34(6):1102–1110

    Article  Google Scholar 

  • Bowley E, O’Gorman DB, Gan BS (2007) Beta-catenin signaling in fibroproliferative disease. J Surg Res 138:141–150

    Article  CAS  PubMed  Google Scholar 

  • Brenner P, Grassler N, Berger A (1994) Epidemiology of Dupuytren’s disease. In: Pathobiochemistry and clinical management. Springer, Berlin, pp 244–254

  • Brenner P, Sachse C, Reichert B, Berger A (1996) Expression von diversen monoklonalen anticörpern im knotenund strangstadium des morbus Dupuytren. Hand-Chir Mikrochir Plast Chir 28:322–327

    CAS  Google Scholar 

  • Brickley Parson D, Glimcher MJ, Albin R (1981) Biochemical changes in the collagen of the palmar fascia in patients with Dupuytren’s disease. J Bone Joint Surg 63(5):787–797

    Article  Google Scholar 

  • Brown RA, Prajapati R, McGrouther DA, Yannas IV, Eastwood M (1998) Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. J Cell Physiol 175:323–332

    Article  CAS  PubMed  Google Scholar 

  • Bruno G, Concetti F, Pertici I, Japtok L, Bernacchioni C, Donati C, Bruni P (2015) CTGF/CCN2 exerts profibrotic action in myoblasts via the up-regulation of sphingosine kinase-1/S1P3 signaling axis: implications in the action mechanism of TGFβ. Biochim Biophys Acta 1851:194–202

    Article  CAS  PubMed  Google Scholar 

  • Bujak M, Ratkaj I, Markova-Car E, Jurišić D, Horvatić A, Vučinić S, Lerga J, Baus-Lončar M, Pavelić K, Kraljević PS (2015) Inflammatory gene expression upon TGF-β1-induced p38 activation in primary Dupuytren’s disease fibroblasts. Front Mol Biosci 8:2–68

    Google Scholar 

  • Cordova A, Tripoli M, Corradino B, Napoli N, Moschella M (2005) Dupuytren’s contracture: an update review of biomolecular aspects and therapeutic perspectives. J Hand Surg (Br) 30(6):557–562

    Article  CAS  Google Scholar 

  • Dave SA, Banducci DR, Graham WP 3rd, Allison M, Ehrlich HP (2001) Differences in alpha smooth muscle actin expression between fibroblasts derived from Dupuytren’s nodules or cords. Exp Mol Pathol 71:147–155

    Article  CAS  PubMed  Google Scholar 

  • Dawes J, Pepper DS (1992) Human vascular endothelial cell catabolise exogenous glycosaminoglycans by a novel route. Thromb Haemost 67:468–472

    CAS  PubMed  Google Scholar 

  • Degreef I, Steeno P, De Smet L (2008) A survey of clinical manifestations and risk factors in women with Dupuytren’s disease. Acta Orthop Belg 74(4):456–460

    PubMed  Google Scholar 

  • Degreef I, De Smet L, Sciot R, Cassiman JJ, Tejpar S (2009) Beta-catenin overexpression in Dupuytren’s disease is unrelated to disease recurrence. Clin Orthop Relat Res 467(3):838–845

    Article  PubMed  Google Scholar 

  • Endo M, Yamamoto R, Namiki O, Satake S, Yosizawa Z (1979) Comparison of glycosaminoglycans (GAG) in normal human plasma and urine. Tohoku J Exp Med 128:89–99

    Article  CAS  PubMed  Google Scholar 

  • Frohlich C, Albrechtsen R, Dyrskjot L, Rudkjaer L, Orntoft TF, Wewer UM (2006) Molecular profiling of ADAM12 in human bladder cancer. Clin Cancer Res 12:7359–7368

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani G, Majno G (1972) Dupuytren’s contracture: fibroblast contraction? an Ultrastructural study. Am J Pathol 66:131–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabbiani G, Ryan GB, Majno G (1971) Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experimentia 27:549–550

    Article  CAS  Google Scholar 

  • Gelberman RH, Amiel D, Rudolph RM, Vance RM (1980) Dupuytren’s contracture. An electron microscopic, biochemical and clinical correlative study. J Bone Joint 62:425–432

    Article  CAS  Google Scholar 

  • Gilpin D, Coleman S, Hall S, Houston A, Karrasch J, Jones N (2010) Injectable collagenase clostridium histolyticum: a new nonsurgical treatment for Dupuytren’s disease. J Hand Surg [Am] 35:2027–2038

    Article  Google Scholar 

  • Gurr E, Pallasch G, Tunn S, Tamm C, Delbrück A (1985) high performance liquid chromatographic assay of disaccharides and oligosaccharides produced by the digestion of glycosaminoglycans with chondroitin sulphate lyases. J Clin Chem Clin Biochem 23:77–87

    CAS  PubMed  Google Scholar 

  • Hindocha S, Iqbal SA, Farhatullah S, Paus R, Bayat A (2011) Characterization of stem cells in Dupuytren’s disease. Br J Surg 98(2):308–315

    Article  CAS  PubMed  Google Scholar 

  • Hoch J, Felouzis E, Meyer-Walters O, Nebe B, Notbohm H (2002) Fibronectin-chemotaxis and collagen-gel contraction of the palmar aponeurosis in morbus dupuytren. Handchir Mikrochir Plast Chir 34:292–297

    Article  CAS  PubMed  Google Scholar 

  • Howard JC, Varallo VM, Ross DC, Roth JH, Faber KJ, Alman B, Gan BS (2003) Elevated levels of beta-catenin and fibronectin in three-dimensional collagen cultures of Dupuytren’s disease cells are regulated by tension in vitro. BMC Musculoskelet Disord 16:16–21

    Article  Google Scholar 

  • Howard JC, Varallo VM, Ross DC, Faber KJ, Roth JH, Seney S, Gan BS (2004) Wound healing-associated proteins Hsp47 and fibronectin are elevated in Dupuytren’s contracture. J Surg Res 117(2):232–238

    Article  CAS  PubMed  Google Scholar 

  • Igarashi A, Nashiro K, Kikuchi K, Ihn H, Fujimoto M, Grotendorst GR, Takehara K (1996) Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J Invest Dermatol 106:729–733

    Article  CAS  PubMed  Google Scholar 

  • Johnston P, Chojnowski AJ, Davidson RK, Riley GP, Donell ST, Clark IM (2007) A complete expression profile of matrix-degrading metalloproteinases in Dupuytren’s disease. J Hand Surg [Am] 32(3):343–351

    Article  Google Scholar 

  • Johnston P, Larson D, Clark IM, Chojnowski AJ (2008) Metalloproteinase gene expression correlates with clinical outcome in Dupuytren’s disease. J Hand Surg [Am] 33(7):1160–1167

    Article  Google Scholar 

  • Karlson P (1998) Proteoglykane. In: Karlson P (ed) Kurzes lehrbuch der biochemie für mediziner und naturwissenschaftler. Thieme, Stuttgart, pp 253–255

    Google Scholar 

  • Kloen P, Jennings CL, Gebhardt MC, Springfield DS, Mankin HJ (1995) Transforming growth factor-beta: possible roles in Dupuytren’s contracture. J Hand Surg [Am] 20:101–108

    Article  CAS  Google Scholar 

  • Komatsu I, Bond J, Selim A, Tomasek JJ, Levin LS, Levinson H (2010) Dupuytren's fibroblast contractility by sphingosine-1-phosphate is mediated through non-muscle myosin II. J Hand Surg [Am] 35(10):1580–1588

    Article  Google Scholar 

  • Koźma EM, Głowacki A, Olczyk K, Ciecierska M (2007) Dermatan sulfate remodeling associated with advanced Dupuytren’s contracture. Acta Biochim Pol 54(4):821–830

    PubMed  Google Scholar 

  • Koźma EM, Wisowski G, Olczyk K (2009) Platelet derived growth factor BB is a ligand for dermatan sulfate chain(s) of small matrix proteoglycans from normal and fibrosis affected fascia. Biochimie 91(11):1394–1404

    Article  PubMed  CAS  Google Scholar 

  • Kraljević Pavelić S, Bratulic S, Hock K, Jurisic D, Hranjec M, Karminski-Zamola G, Zinic B, Bujak M, Pavelic K (2009a) Screening of potential prodrugs on cells derived from Dupuytren’s disease patients. Biomed Pharmacother 63(8):577–585

    Article  PubMed  CAS  Google Scholar 

  • Kraljević Pavelić S, Sedic M, Hock K, Vucinic S, Jurisic D, Gehrig P, Scott M, Schlapbach R, Cacev T, Kapitanovic S, Pavelic K (2009b) An integrated proteomics approach for studying the molecular pathogenesis of Dupuytren’s disease. J Pathol 217(4):524–533

    Article  PubMed  CAS  Google Scholar 

  • Krstic RV (1988) In: Die gewebe des menschen und der säugetiere. Springer, Berlin

  • Kuhn MA, Payne WG, Kierney PC (2001) Cytokine manipulation of explanted Dupuytren’s affected human palmar fascia. Int J Surg Invest 2:443–456

    CAS  Google Scholar 

  • Kuhn MA, Wang X, Payne W, Ko F, Robson MC (2002) Tamoxifen decreases fibroblast function and downregulates TGF-β2 in Dupuytren’s affected palmar fascia. J Surg Res 103:146–152

    Article  CAS  PubMed  Google Scholar 

  • Kveiborg M, Frohlich C, Albrechtsen R, Tischler V, Dietrich N, Holck P, Kronqvist P, Rank F, Mercurio AM, Wewer UM (2005) A role for ADAM12 in breast tumor progression and stromal cell apoptosis. Cancer Res 65:4754–4761

    Article  CAS  PubMed  Google Scholar 

  • Le Pabic H, Bonnier D, Wewer UM, Coutand A, Musso O, Baffet G, Clement B, Theret N (2003) ADAM12 in human liver cancers: TGF-β-regulated expression in stellate cells is associated with matrix remodeling. Hepatology 37:1056–1066

    Article  PubMed  CAS  Google Scholar 

  • Li C, Nguyen Q, Cole WG (2001) Potential treatment for clubfeet based on growth factor blockade. J Pediatr Orthop 21:372–377

    CAS  PubMed  Google Scholar 

  • Luck JV (1959) Dupuytren’s contracture: a new concept of the pathogenesis correlated with surgical management. J Bone Joint Surg 41:635–664

    Article  PubMed  Google Scholar 

  • Magro G, Lanteri E, Micali G, Paravizzini G, Travali S, Lanzafame S (1997) Myofibroblasts of palmar fibromatosis co-express transforming growth factor-alpha and epidermal growth factor receptor. J Pathol 181:213–217

    Article  CAS  PubMed  Google Scholar 

  • Majno G (1979) The story of fibroblasts. Am J Surg Pathol 3:535–542

    Article  CAS  PubMed  Google Scholar 

  • Mast BA, Hayness JH, Krummel TM, Diegelmann RF, Cohen KI (1992) In vitro degradation of fetal wound hyaluronic acid results in increase fibroplasias, collagen deposition and neovascularisation. Plast Reconstr Surg 89:503–509

    Article  CAS  PubMed  Google Scholar 

  • Melling M, Karimian-Teherani D, Mostler S, Behnam M, Sobal G, Menzel EJ (2000) Changes of biochemical and biomechanical properties in Dupuytren disease. Arch Pathol Lab Med 124:1275–1281

    CAS  PubMed  Google Scholar 

  • Meyerding HW, Black JR, Broders AC (1941) The etiology and pathology of Dupuytren’s contracture. Surg Gynecol Obstet 72(3):582–590

  • Montesano R, Orci L (1988) Transforming growth factor beta stimulates collagen-matrix contraction by fibroblasts: implications for wound healing. Proc Natl Acad Sci U S A 85:4894–4897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosakhani N, Guled M, Lahti L, Borze I, Forsman M, Pääkkönen V, Ryhänen J, Knuutila S (2010) Unique microRNA profile in Dupuytren’s contracture supports deregulation of β-catenin pathway. Mod Pathol 23:1544–1552

    Article  CAS  PubMed  Google Scholar 

  • Moyer KE, Banducci DR, Graham WP 3rd, Ehrlich HP (2002) Dupuytren’s disease: physiologic changes in nodule and cord fibroblasts through aging in vitro. Plast Reconstr Surg 110:187–193

    Article  PubMed  Google Scholar 

  • Murrel GAC, Hueston JT (1990) Aetiology f Dupuytren’s contracture. Aust N Z Surg 60:247–252

    Article  Google Scholar 

  • Mutsaers SE, Bishop JE, McGrouther G, Laurent GJ (1997) Mechanisms of tissue repair: from wound healing to fibrosis. Int J Biochem Cell Biol 29:5–17

    Article  CAS  PubMed  Google Scholar 

  • Pagnotta A, Specchia N, Greco F (2002) Androgen receptors in Dupuytren’s contracture. J Orthop Res 20:163–168

    Article  CAS  PubMed  Google Scholar 

  • Pagnotta A, Specchia N, Soccetti A, Manzotti S, Greco F (2003) Responsiveness of Dupuytren’s disease fibroblasts to 5 –alpha dihydrotestosterone. J Hand Surg [Am] 28(6):1029–1034

    Article  Google Scholar 

  • Pasquali Ronchetti I, Guerra D, Baccarani Contri M, Fornieri C, Mori G, Marcuzzi A, Zanasi S, Caroli A (1993) A clinical ultrastructural and immunohistochemical study of Dupuytren’s disease. J Hand Surg (Br) 18:262–269

    Article  CAS  Google Scholar 

  • Qian A, Meals A, Rajfer J, Gonzalez-Cadavid NF (2004) Comparison of gene expression profiles between Peyronie’s disease and Dupuytren’s contracture. Urology 64:399–404

    Article  CAS  PubMed  Google Scholar 

  • Rocks N, Paulissen G, El Hour M, Quesada F, Crahay C, Gueders M, Foidart JM, Noel A, Cataldo D (2008) Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 90:369–379

    Article  CAS  PubMed  Google Scholar 

  • Ryan GB, Cliff WJ, Gabbiani G, Irlé C, Montandon D, Statkov PR, Majno G (1974) Myofibroblasts in human granulation tissue. Hum Pathol 5:55–67

    Article  CAS  PubMed  Google Scholar 

  • Satish L, LaFramboise WA, O’Gorman DB, Johnson S, Janto B, Gan BS, Baratz ME, Hu FZ, Post JC, Ehrlich GD, Kathju S (2008) Identification of differentially expressed genes in fibroblasts derived from patients with Dupuytren’s Contracture. BMC Med Genom 23:10–15

    Article  CAS  Google Scholar 

  • Satish L, LaFramboise WA, Johnson S, Vi L, Njarlangattil A, Raykha C, Krill-Burger JM, Gallo PH, O’Gorman DB, Gan BS, Baratz ME, Ehrlich GD, Kathju S (2012) Fibroblasts from phenotypically normal palmar fascia exhibit molecular profiles highly similar to fibroblasts from active disease in Dupuytren’s Contracture. BMC Med Genom 5:15

    Article  CAS  Google Scholar 

  • Satish L, Palmer B, Liu F, Papatheodorou L, Rigatti L, Baratz ME, Kathju S (2015) Developing an animal model of Dupuytren’s disease by orthotopic transplantation of human fibroblasts into athymic rat. BMC Musculoskelet Disord 16:138–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidtchen A, Fransson LA (1992) Analysis of glycosaminoglycan chains from different proteoglycan populations in human embryonic skin fibroblasts. Eur J Biochem 208:537–546

    Article  CAS  PubMed  Google Scholar 

  • Schürch W, Skalli O, Gabbiani G (1990) Cellular biology. In: McFarlane RM, McGrouther DA, Flint MH (eds) Dupuytren’s disease: biology and treatment, vol 5, The hand and upper limb series. Churchill Livingstone, Edinburgh, pp 31–47

    Google Scholar 

  • Scott JE (1994) Proteoglycan-collagen interactions in connective tissues. In: Berger A, Delbrück A, Brenner P, Hinzmann R (eds) Dupuytren’s disease. Pathobiochemistry and clinical management. Springer, Berlin, pp 171–177

    Chapter  Google Scholar 

  • Shih B, Brown JJ, Armstrong DJ, Lindau T, Bayat A (2009) Differential gene expression analysis of subcutaneous fat, fascia, and skin overlying a Dupuytren’s disease nodule in comparison to control tissue. Hand (NY) 4:294–301

    Article  Google Scholar 

  • Shih B, Tassabehji M, Watson J, Bayat A (2012) DNA Copy number variations at chromosome 7p14.1 and chromosome 14q11.2 are associated with Dupuytren’s disease: potential role for MMP and Wnt signaling pathway. Plast Reconstr Surg 129:921–932

    Article  CAS  PubMed  Google Scholar 

  • Silvestro L, Viano J, Naggi A, Torri G, Da Col R, Baiocchi C (1992) High-performance liquid chromatographic-mass spectrometric analysis of oligosaccharides from enzymatic digestion of glycosaminoglycans. J Chromatogr 591:225–232

    Article  CAS  PubMed  Google Scholar 

  • Skalli O, Schürch D, Seemayer TA, Lagacé R, Montandon D, Pittet B, Gabbiani G (1989) Myofibroblasts from diverse pathologic settings are heterogeneous in their contento f actin isoforms intermediate filament proteins. Lab Investig 60:275–285

    CAS  PubMed  Google Scholar 

  • Tomasek JJ, Haaskma CC (1991) Fibronectin filaments and actin microfilaments are organized into a fibroneous in Dupuytren’s disesed tissue. Anat Rec 230:175–182

    Article  CAS  PubMed  Google Scholar 

  • Tomasek JJ, Rayan GM (1995) Correlation of alpha-smooth muscle actin expression and contraction in Dupuytren’s disease fibroblasts. J Hand Surg [Am] 20(3):450–455

    Article  CAS  Google Scholar 

  • Tomasek JJ, Schultz RI, Episalla CW, Newman SA (1986) The cytoskeleton and the extra-cellular matrix of the Dupuytren’s disease “myofibroblast”: an immune-fluorescence study of a non-muscle cell type. J Hand Surg [Am] 11(3):365–371

    Article  CAS  Google Scholar 

  • Tomasek JJ, Shultz RJ, Haaksma CJ (1987) Extracellular matrix-cytosckeletal connections at the surface of the specialized contractile fibroblast (myofibroblast) in Dupuytren’s disease. J Bone Joint 69:1400–1407

    Article  CAS  Google Scholar 

  • Tomasek JJ, Vaughan MB, Haaksma CJ (1999) Cellular Structure and biology of Dupuytren’s disease. Hand Clin 15:21–34

    CAS  PubMed  Google Scholar 

  • Townley WA, Cambrey AD, Khaw PT, Grobbelaar AO (2008) Matrix metalloproteinase inhibition reduces contraction by dupuytren fibroblasts. J Hand Surg [Am] 33(9):1608–1616

    Article  Google Scholar 

  • Townley WA, Cambrey AD, Khaw PT, Grobbelaar AO (2009) The role of an MMP inhibitor in the regulation of mechanical tension by Dupuytren’s disease fibroblasts. J Hand Surg Eur Vol 34(6):783–787

    Article  CAS  PubMed  Google Scholar 

  • Trelstad RL (1989) Matrix glycoproteins. In: Kelley WN, Harris ED, Ruddy S, Sledge CB (eds) Textbook of rheumatology. Saunders, Philadelphia, pp 42–53

    Google Scholar 

  • Tsang M, Leask A (2015) CCN2 is required for recruitment of Sox2-expressing cells during cutaneous tissue repair. J Cell Commun Signal 9(4):341–346

    Article  PubMed  Google Scholar 

  • Tunn S, Gurr E, Delbruck A, Buhr T, Flory J (1988) The distribution of unsulphated and sulphated glycosaminoglycans in palmar fascia from patients with Dupuytren’s disease and healthy subjects. J Clin Chem Clin Biochem 26:7–14

    CAS  PubMed  Google Scholar 

  • Ulrich D, Hrynyschyn K, Pallua N (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in sera and tissue of patients with Dupuytren’s disease. Plast Reconstr Surg 112:1279–1286

    Article  PubMed  Google Scholar 

  • Ulrich D, Ulrich F, Piatkowski A, Pallua N (2009) Expression of matrix metalloproteinases and their inhibitors in cords and nodules of patients with Dupuytren’s disease. Arch Orthop Trauma Surg 129(11):1453–1459

    Article  PubMed  Google Scholar 

  • Varma R, Varma RS (1983) In: Mucopolysaccharides, glycosaminoglicans of body fluids in health and disease. De Gruiter, Berlin

  • Vaughan MB, Howard EW, Tomasek JJ (2000) Transforming growth factor beta-1 promotes the morphological and functional differentiation of the myofibroblast. Exp Cell Res 257:180–189

    Article  CAS  PubMed  Google Scholar 

  • Verjee LS, Midwood K, Davidson D, Eastwood M, Nanchahal J (2010) Post-transcriptional regulation of alpha-smooth muscle actin determines the contractile phenotype of Dupuytren’s nodular cells. J Cell Physiol 224(3):681–690

    Article  CAS  PubMed  Google Scholar 

  • Verjee LS, Verhoekx JS, Chan JK, Krausgruber T, Nicolaidou V, Izadi D, Davidson D, Feldmann M, Midwood KS, Nanchahal J (2013) Unraveling the signaling pathways promoting fibrosis in Dupuytren’s disease reveals TNF as a therapeutic target. Proc Natl Acad Sci U S A 110(10):E928–E937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vi L, Feng L, Zhu RD, Wu Y, Satish L, Gan BS, O’Gorman DB (2009a) Periostin differentially induces proliferation, contraction and apoptosis of primary Dupuytren’s disease and adjacent palmar fascia cells. Exp Cell Res 315(20):3574–3586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vi L, Njarlangattil A, Wu Y, Gan BS, O’Gorman DB (2009b) Type-1 Collagen differentially alters beta-catenin accumulation in primary Dupuytren’s Disease cord and adjacent palmar fascia cells. BMC Musculoskelet Disord 19(10):72–77

    Article  CAS  Google Scholar 

  • Vi L, Gan BS, O’Gorman DB (2010) The potential roles of cell migration and extra-cellular matrix interactions in Dupuytren’s disease progression and recurrence. Med Hypotheses 74:510–512

    Article  CAS  PubMed  Google Scholar 

  • Viil J, Maasalu K, Mäemets-Allas K, Tamming L, Lõhmussaar K, Tooming M, Ingerpuu S, Märtson A, Jaks V (2015) Laminin-rich blood vessels display activated growth factor signaling and act as the proliferation centers in Dupuytren’s contracture. Arthritis Res Ther 17(1):144–153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong M, Mudera V (2006) Feedback inhibition of high TGF-beta1 concentrations on myofibroblast induction and contraction by Dupuytren’s fibroblasts. J Hand Surg (Br) 31(5):473–483

    Article  CAS  Google Scholar 

  • Xing Z, Tremblay GM, Sime PJ et al (1997) Overexpression of granulocyte-macrophage colony-stimulating factor induces pulmonary granulation tissue formation and fibrosis by induction of transforming growth factor B1 and myofibroblast accumulation. Am J Pathol 150:59–66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yenidunya MO, Yenidunya S, Seven E (2009) Pacinian hypertrophy in a type 2A hand burn contracture and Pacinian hypertrophy and hyperplasia in a Dupuytren’s contracture. Burns 35(3):446–450

    Article  PubMed  Google Scholar 

  • Yildiz S, Karacaoğlu E, Pehlivan O (2004) Hyperbaric oxygen for the treatment of early-phase Dupuytren’s contracture. Microsurgery 24(1):26–29

    Article  PubMed  Google Scholar 

  • Yurchenco PD (1989) Laminin polymerization and binding to glycosaminoglycans: a hypothesis for modulation of basement membrane structure. In: Aebi U, Engel J (eds) Cytoskeletal and extracellular proteins. Structure, interactions and assembly. Springer, Berlin, pp 357–366

    Chapter  Google Scholar 

  • Zhang AY, Fong KD, Pham H, Nacamuli RP, Longaker MT, Chang J (2008) Gene expression analysis of Dupuytren’s disease: the role of TGF-beta2. J Hand Surg Eur Vol 33(6):783–790

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Hovius SE, Slijper HP, Feitz R, Van Nieuwenhoven CA, Pieters AJ, Selles RW (2015) Collagenase clostridium histolyticum versus limited fasciectomy for Dupuytren’s contracture: outcomes from a multicenter propensity score matched study. Plast Reconstr Surg 136(1):87–97

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Tripoli.

Ethics declarations

Funding

None.

Conflicts of interest

None declared.

Ethical approval

Not required.

Financial disclosure

The authors disclose any financial and personal relationships with other people or organisations that could inappropriately influence (bias) their work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripoli, M., Cordova, A. & Moschella, F. Update on the role of molecular factors and fibroblasts in the pathogenesis of Dupuytren’s disease. J. Cell Commun. Signal. 10, 315–330 (2016). https://doi.org/10.1007/s12079-016-0331-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-016-0331-0

Keywords

Navigation