Skip to main content

Advertisement

Log in

Hepatitis B virus receptors and molecular drug targets

  • Review Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Chronic hepatitis B virus (HBV) infection is a leading cause of liver disease worldwide. Virus-induced diseases include cirrhosis, liver failure and hepatocellular carcinoma. Current therapeutic strategies may at best control infection without reaching cure. Complementary antiviral strategies aimed at viral cure are therefore urgently needed. HBV entry is the first step of the infection cycle, which leads to the formation of cccDNA and the establishment of chronic infection. Viral entry may thus represent an attractive target for antiviral therapy. This review summarizes the molecular virology and cell biology of HBV entry, including the discovery and development of new HBV entry inhibitors, and discusses their potential in future treatment of HBV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 2005;5:215–229

    Article  CAS  PubMed  Google Scholar 

  2. El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012;142(1264–1273):e1261

    Google Scholar 

  3. Thomas D, Zoulim F. New challenges in viral hepatitis. Gut 2012;61(Suppl 1):i1–i5

    Article  CAS  PubMed  Google Scholar 

  4. Zeisel MB, Lucifora J, Mason WS, Sureau C, Beck J, Levrero M, et al. Towards an HBV cure: state-of-the-art and unresolved questions-report of the ANRS workshop on HBV cure. Gut 2015;64:1314–1326

    Article  CAS  PubMed  Google Scholar 

  5. Urban S. Liver capsule: Entry and entry inhibition of hepatitis B virus and hepatitis delta virus into hepatocytes. Hepatology 2016;63:633

  6. Nassal M. Hepatitis B virus cccDNA—viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut 2015;64:1972–1984

    Article  CAS  PubMed  Google Scholar 

  7. Ciancio A, Rizzetto M. Chronic hepatitis D at a standstill: where do we go from here? Nat Rev Gastroenterol Hepatol 2014;11:68–71

    Article  CAS  PubMed  Google Scholar 

  8. Wedemeyer H, Yurdaydin C, Dalekos GN, Erhardt A, Cakaloglu Y, Degertekin H, et al. Peginterferon plus adefovir versus either drug alone for hepatitis delta. N Engl J Med 2011;364:322–331

    Article  CAS  PubMed  Google Scholar 

  9. Baumert TF, Verrier ER, Nassal M, Chung RT, Zeisel MB. Host-targeting agents for treatment of hepatitis B virus infection. Curr Opin Virol 2015;14:41–46

    Article  CAS  PubMed  Google Scholar 

  10. Urban S, Bartenschlager R, Kubitz R, Zoulim F. Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology 2014;147:48–64

    Article  CAS  PubMed  Google Scholar 

  11. Colpitts CC, Verrier ER, Baumert TF. Targeting viral entry for treatment of hepatitis B and C virus infections. ACS Infect Dis 2015;1:420–427

    Article  CAS  Google Scholar 

  12. Gripon P, Diot C, Theze N, Fourel I, Loreal O, Brechot C, et al. Hepatitis B virus infection of adult human hepatocytes cultured in the presence of dimethyl sulfoxide. J Virol 1988;62:4136–4143

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Walter E, Keist R, Niederost B, Pult I, Blum HE. Hepatitis B virus infection of tupaia hepatocytes in vitro and in vivo. Hepatology 1996;24:1–5

    CAS  PubMed  Google Scholar 

  14. Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci USA 2002;99:15655–15660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dandri M, Lutgehetmann M, Petersen J. Experimental models and therapeutic approaches for HBV. Semin Immunopathol 2013;35:7–21

    Article  CAS  PubMed  Google Scholar 

  16. Baumert TF, Rogers SA, Hasegawa K, Liang TJ. Two core promotor mutations identified in a hepatitis B virus strain associated with fulminant hepatitis result in enhanced viral replication. J Clin Invest 1996;98:2268–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sells MA, Chen ML, Acs G. Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci USA 1987;84:1005–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ladner SK, Otto MJ, Barker CS, Zaifert K, Wang GH, Guo JT, et al. Inducible expression of human hepatitis B virus (HBV) in stably transfected hepatoblastoma cells: a novel system for screening potential inhibitors of HBV replication. Antimicrob Agents Chemother 1997;41:1715–1720

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Glebe D, Urban S. Viral and cellular determinants involved in hepadnaviral entry. World J Gastroenterol 2007;13:22–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Engelke M, Mills K, Seitz S, Simon P, Gripon P, Schnolzer M, et al. Characterization of a hepatitis B and hepatitis delta virus receptor binding site. Hepatology 2006;43:750–760

    Article  CAS  PubMed  Google Scholar 

  21. Gripon P, Cannie I, Urban S. Efficient inhibition of hepatitis B virus infection by acylated peptides derived from the large viral surface protein. J Virol 2005;79:1613–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife 2012;1:e00049

    Article  PubMed  PubMed Central  Google Scholar 

  23. Claro da Silva T, Polli JE, Swaan PW. The solute carrier family 10 (SLC10): beyond bile acid transport. Mol Asp Med 2013;34:252–269

    Article  CAS  Google Scholar 

  24. Ni Y, Lempp FA, Mehrle S, Nkongolo S, Kaufman C, Falth M, et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 2014;146:1070–1083

    Article  CAS  PubMed  Google Scholar 

  25. Schulze A, Gripon P, Urban S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 2007;46:1759–1768

    Article  CAS  PubMed  Google Scholar 

  26. Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 2007;446:1030–1037

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y, Gotte M, Liu J, Park PW. Microbial subversion of heparan sulfate proteoglycans. Mol Cells 2008;26:415–426

    PubMed  Google Scholar 

  28. Lamas Longarela O, Schmidt TT, Schoneweis K, Romeo R, Wedemeyer H, Urban S, et al. Proteoglycans act as cellular hepatitis delta virus attachment receptors. PLoS One 2013;8:e58340

    Article  PubMed  PubMed Central  Google Scholar 

  29. Leistner CM, Gruen-Bernhard S, Glebe D. Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell Microbiol 2008;10:122–133

    CAS  PubMed  Google Scholar 

  30. Sureau C, Salisse J. A conformational heparan sulfate binding site essential to infectivity overlaps with the conserved hepatitis B virus a-determinant. Hepatology 2013;57:985–994

    Article  CAS  PubMed  Google Scholar 

  31. Verrier ER, Colpitts CC, Bach C, Heydmann L, Weiss A, Renaud M, et al. A targeted functional RNAi screen uncovers Glypican 5 as an entry factor for hepatitis B and D viruses. Hepatology 2016;63:35–48

    Article  CAS  PubMed  Google Scholar 

  32. Filmus J, Capurro M, Rast J. Glypicans. Genome Biol 2008;9:224

    Article  PubMed  PubMed Central  Google Scholar 

  33. Filmus J, Capurro M. The role of glypicans in Hedgehog signaling. Matrix Biol 2014;35:248–252

    Article  CAS  PubMed  Google Scholar 

  34. Li F, Shi W, Capurro M, Filmus J. Glypican-5 stimulates rhabdomyosarcoma cell proliferation by activating Hedgehog signaling. J Cell Biol 2011;192:691–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baumert TF, Meredith L, Ni Y, Felmlee DJ, McKeating JA, Urban S. Entry of hepatitis B and C viruses—recent progress and future impact. Curr Opin Virol 2014;4C:58–65

    Article  Google Scholar 

  36. Hagenbuch B, Meier PJ. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest 1994;93:1326–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yan H, Peng B, Liu Y, Xu G, He W, Ren B, et al. Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide. J Virol 2014;88:3273–3284

    Article  PubMed  PubMed Central  Google Scholar 

  38. Peng L, Zhao Q, Li Q, Li M, Li C, Xu T, Jing X, et al. The p.Ser267Phe variant in SLC10A1 is associated with resistance to chronic hepatitis B. Hepatology 2015;61:1251–1260

    Article  CAS  PubMed  Google Scholar 

  39. Hu HH, Liu J, Lin YL, Luo WS, Chu YJ, Chang CL, et al. The rs2296651 (S267F) variant on NTCP (SLC10A1) is inversely associated with chronic hepatitis B and progression to cirrhosis and hepatocellular carcinoma in patients with chronic hepatitis B. Gut 2015. (In press)

  40. Yan H, Peng B, He W, Zhong G, Qi Y, Ren B, et al. Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide. J Virol 2013;87:7977–7991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lempp FA, Mutz P, Lipps C, Wirth D, Bartenschlager R, Urban S. Evidence that hepatitis B virus replication in mouse cells is limited by the lack of a host cell dependency factor. J Hepatol 2015;64:556–564

  42. Huang HC, Chen CC, Chang WC, Tao MH, Huang C. Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis. J Virol 2012;86:9443–9453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Macovei A, Radulescu C, Lazar C, Petrescu S, Durantel D, Dwek RA, et al. Hepatitis B virus requires intact caveolin-1 function for productive infection in HepaRG cells. J Virol 2010;84:243–253

    Article  CAS  PubMed  Google Scholar 

  44. Watashi K, Sluder A, Daito T, Matsunaga S, Ryo A, Nagamori S, et al. Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter, sodium taurocholate cotransporting polypeptide (NTCP). Hepatology 2014;59:1726–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mailly L, Xiao F, Lupberger J, Wilson GK, Aubert P, Duong FHT, et al. Clearance of persistent hepatitis C virus infection using a monoclonal antibody specific for tight junction protein claudin-1. Nat Biotechnol 2015;33:549–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. de Jong YP, Dorner M, Mommersteeg MC, Xiao JW, Balazs AB, Robbins JB, et al. Broadly neutralizing antibodies abrogate established hepatitis C virus infection. Sci Transl Med 2014;6:254ra129

    Article  PubMed  PubMed Central  Google Scholar 

  47. Samuel D, Muller R, Alexander G, Fassati L, Ducot B, Benhamou JP, et al. Liver transplantation in European patients with the hepatitis B surface antigen. N Engl J Med 1993;329:1842–1847

    Article  CAS  PubMed  Google Scholar 

  48. Eren R, Ilan E, Nussbaum O, Lubin I, Terkieltaub D, Arazi Y, et al. Preclinical evaluation of two human anti-hepatitis B virus (HBV) monoclonal antibodies in the HBV-trimera mouse model and in HBV chronic carrier chimpanzees. Hepatology 2000;32:588–596

    Article  CAS  PubMed  Google Scholar 

  49. Galun E, Eren R, Safadi R, Ashour Y, Terrault N, Keeffe EB, et al. Clinical evaluation (phase I) of a combination of two human monoclonal antibodies to HBV: safety and antiviral properties. Hepatology 2002;35:673–679

    Article  CAS  PubMed  Google Scholar 

  50. Zhang TY, Yuan Q, Zhao JH, Zhang YL, Yuan LZ, Lan Y, et al. Prolonged suppression of HBV in mice by a novel antibody that targets a unique epitope on hepatitis B surface antigen. Gut 2015. (In press)

  51. Sureau C. A unique monoclonal antibody for therapeutic use against chronic hepatitis B: not all antibodies are created equal. Gut 2015. (In press)

  52. Glebe D, Aliakbari M, Krass P, Knoop EV, Valerius KP, Gerlich WH. Pre-s1 antigen-dependent infection of Tupaia hepatocyte cultures with human hepatitis B virus. J Virol 2003;77:9511–9521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hong HJ, Ryu CJ, Hur H, Kim S, Oh HK, Oh MS, et al. In vivo neutralization of hepatitis B virus infection by an anti-preS1 humanized antibody in chimpanzees. Virology 2004;318:134–141

    Article  CAS  PubMed  Google Scholar 

  54. Petcu DJ, Aldrich CE, Coates L, Taylor JM, Mason WS. Suramin inhibits in vitro infection by duck hepatitis B virus, Rous sarcoma virus, and hepatitis delta virus. Virology 1988;167:385–392

    CAS  PubMed  Google Scholar 

  55. Krepstakies M, Lucifora J, Nagel CH, Zeisel MB, Holstermann B, Hohenberg H, et al. A new class of synthetic peptide inhibitors blocks attachment and entry of human pathogenic viruses. J Infect Dis 2012;205:1654–1664

    Article  CAS  PubMed  Google Scholar 

  56. Petersen J, Dandri M, Mier W, Lutgehetmann M, Volz T, von Weizsacker F, et al. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat Biotechnol 2008;26:335–341

    Article  CAS  PubMed  Google Scholar 

  57. Volz T, Allweiss L, MBarek MB, Warlich M, Lohse AW, Pollok JM, et al. The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus. J Hepatol 2013;58:861–867

    Article  CAS  PubMed  Google Scholar 

  58. Bogomolov P, Voronkova N, Allweiss L, Dandri M, Schwab M, Lempp FA, et al. A proof-of-concept Phase 2a clinical trial with HBV/HDV entry inhibitor Myrcludex B. Hepatology 2014;60:1279a–1280a

    Google Scholar 

  59. Nkongolo S, Ni Y, Lempp FA, Kaufman C, Lindner T, Esser-Nobis K, et al. Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by cyclophilin-independent interference with the NTCP receptor. J Hepatol 2014;60:723–731

    Article  CAS  PubMed  Google Scholar 

  60. Lucifora J, Esser K, Protzer U. Ezetimibe blocks hepatitis B virus infection after virus uptake into hepatocytes. Antivir Res. 2013;97:195–197

    Article  CAS  PubMed  Google Scholar 

  61. Ko C, Park WJ, Park S, Kim S, Windisch MP, Ryu WS. The FDA approved drug irbesartan inhibits HBV-infection in HepG2 cells stably expressing sodium taurocholate co-transporting polypeptide. Antivir Ther 2015;20(8):835–842

  62. Blanchet M, Sureau C, Labonte P. Use of FDA approved therapeutics with hNTCP metabolic inhibitory properties to impair the HDV lifecycle. Antivir Res 2014;106:111–115

    Article  CAS  PubMed  Google Scholar 

  63. Kaneko M, Watashi K, Kamisuki S, Matsunaga H, Iwamoto M, Kawai F, et al. A novel tricyclic polyketide, vanitaracin A, specifically inhibits the entry of hepatitis B and D viruses by targeting sodium taurocholate cotransporting polypeptide. J Virol 2015;89:11945–11953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dong Z, Ekins S, Polli JE. Structure–activity relationship for FDA approved drugs as inhibitors of the human sodium taurocholate cotransporting polypeptide (NTCP). Mol Pharm 2013;10:1008–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang HC, Tao MH, Hung TM, Chen JC, Lin ZJ, Huang C. (-)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes. Antivir Res 2014;111:100–111

    Article  CAS  PubMed  Google Scholar 

  66. Belloni L, Allweiss L, Guerrieri F, Pediconi N, Volz T, Pollicino T, et al. IFN-alpha inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Invest 2012;122:529–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu F, Campagna M, Qi Y, Zhao X, Guo F, Xu C, et al. Alpha-interferon suppresses hepadnavirus transcription by altering epigenetic modification of cccDNA minichromosomes. PLoS Pathog 2013;9:e1003613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Baumert.

Ethics declarations

Funding

This work was supported by Inserm, University of Strasbourg, the European Union (EU-INTERREG-IV-Rhin Supérieur-FEDER Hepato-Regio-Net 2012; ERC-2008-AdG-233130-HEPCENT; FP7 305600 HepaMab; EU Infect-Era hepBccc; EU H2020 HEPCAR; ERC-2014-AdG-671231-HEPCIR), ANRS (2012/318, 2013/108) and the French Cancer Agency (ARC IHU201301187). This work has been published under the framework of the LABEX ANR-10-LAB-28 and benefits from a funding from the state managed by the French National Research Agency as part of the Investments for the future program. CCC was supported by a fellowship from the Canadian Institutes of Health Research (201411MFE-338606-245517).

Conflict of interest

Eloi R. Verrier, Che C. Colpitts, Camille Sureau and Thomas F. Baumert declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verrier, E.R., Colpitts, C.C., Sureau, C. et al. Hepatitis B virus receptors and molecular drug targets. Hepatol Int 10, 567–573 (2016). https://doi.org/10.1007/s12072-016-9718-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-016-9718-5

Keywords

Navigation