Skip to main content

Advertisement

Log in

How ICT investment influences energy demand in South Korea and Japan

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

This empirical study examines substitute/complementary relationships in the demands for ICT capital, non-ICT capital, energy, materials, and labor in the industrial sectors in Japan and South Korea during 1973–2006 and 1980–2009, respectively. In doing so, a dynamic factor demand model is applied to link intertemporal production decisions by explicitly recognizing that the level of certain factors of production (referred to as quasi-fixed factors: ICT and non-ICT capital) cannot be changed without incurring so-called adjustment costs, defined in terms of forgone output from current production. Special emphasis is on the effects of ICT investment on energy use through the substitute/complementary relationships. This study quantifies how ICT capital investment in South Korea and Japan affects industrial energy demand. We find that ICT and non-ICT capital investment serve as substitutes for the inputs of labor and energy use. The results also demonstrate significant cost differences across industries in both countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. These data are publicly available at “http://ecos.bok.or.kr/EIndex_en.jsp/.”

  2. These data are publicly available at “http://ecos.bok.or.kr/EIndex_en.jsp/.”

  3. The dataset is publicly available at “http://www.stat-search.boj.or.jp/index_en.html/.”

  4. This variable is measured by accounting for heterogeneity in the labor force and the productivity of various types of labor (based on skill, gender, education, etc.).

  5. There has been some confusion in the literature concerning the price and its use for intermediate goods. Most studies agree on using the consumer purchase price which includes payable taxes on goods and the margins on trade and transportation (when trade and transportation are included as separate products), but excludes the subsidies on goods. However, as clearly explained by O’Mahony and Timmer (2009), the EU KLEMS was not able to collect the necessary data to cover the mentioned issues above, and instead used the purchase price to value intermediate inputs in all cases except for the USA.

  6. Generally, when computing standard errors for estimated parameters within the maximum likelihood estimator (ML) framework, the diagonal elements of the observed information matrix are used which is obtained directly by the Hessian argument. For details, see Gallant (2008).

  7. The aim here is to reflect the structural changes in the Korean economy because of the implementation of the country’s economic development plan described in the “Introduction” section.

  8. The estimated coefficients for the industries’ dummy variables are not reported to save space.

References

  • Abdelaziz, E. A., Saidur, R., & Mekhilef, S. (2011). A review on energy saving strategies in industrial sector. Renewable & Sustainable Energy Reviews, 15(1), 150–168. doi:10.1016/j.rser.2010.09.003.

    Article  Google Scholar 

  • Adeyemi, O. I., & Hunt, L. C. (2007). Modelling OECD industrial energy demand: asymmetric price responses and energy-saving technical change. Energy Economics, 29(4), 693–709. doi:10.1016/j.eneco.2007.01.007.

    Article  Google Scholar 

  • Agnolucci, P. (2009). The energy demand in the British and German industrial sectors: heterogeneity and common factors. Energy Economics, 31(1), 175–187. doi:10.1016/j.eneco.2008.08.005.

    Article  Google Scholar 

  • Allan, G., Hanley, N., McGregor, P., Swales, K., & Turner, K. (2007). The impact of increased efficiency in the industrial use of energy: a computable general equilibrium analysis for the United Kingdom. Energy Economics, 29(4), 779–798. doi:10.1016/j.eneco.2006.12.006.

    Article  Google Scholar 

  • Amato, L., & Amato, C. (2000). The impact of high tech production techniques on productivity and profitability in selected U.S. manufacturing industries. Review of Industrial Organization, 16(4), 327–342. doi:10.1023/A:1007800121100.

    Article  Google Scholar 

  • Arnberg, S., & Bjorner, T. B. (2007). Substitution between energy, capital and labour within industrial companies: a micro panel data analysis. Resource and Energy Economics, 29(2), 122–136. doi:10.1016/j.reseneeco.2006.01.001.

    Article  Google Scholar 

  • Arnold, J. M., Nicoletti, G., & Scarpetta, S. (2011). Regulation, resource reallocation and productivity growth. European Investment Bank Papers, 16(1), 90–115.

    Google Scholar 

  • Atkinson, R. D., & McKay, A. (2007). Digital prosperity. Understanding the economic benefits of the information technology revolution. http://www.itif.org/files/digital_prosperity.pdf. Accessed 20 Oct 2013.

  • Berndt, E. R., & Morrison, C. J. (1981). Dynamic models of energy demand: an assessment and comparison. In E. R. Berndt & B. C. Field (Eds.), Modeling and measuring natural resource substitution: revisions of papers originally presented at a conference held in Key Biscayne, Florida. Cambridge: MIT Press.

    Google Scholar 

  • Berndt, E. R., & Morrison, C. J. (1995). High-tech capital formation and economic performance in U.S. manufacturing industries: an exploratory analysis. Journal of Econometrics, 65(1), 9–43. doi:10.1016/0304-4076(94)01596-r.

    Article  Google Scholar 

  • Berndt, E. R., Morrison, C. J., & Watkins, G. C. (1981). Dynamic models of energy demand: an assessment and comparison. In E. R. Berndt & B. C. Field (Eds.), Modeling and measuring national resource substitution. Cambridge: MIT Press.

    Google Scholar 

  • Bessen, J. (2002). Technology adoption costs and productivity growth: the transition to information technology. Review of Economic Dynamics, 5(2), 443–469. doi:10.1006/redy.2001.0152.

    Article  Google Scholar 

  • Bhattacharyya, S. C., & Timilsina, G. R. (2009). Energy demand models for policy formulation: a comparative study of energy demand models (policy research working paper WPS4866). World Bank. http://econ.worldbank.org/external/default/main?pagePK=64165259&theSitePK=469372&piPK=64165421&menuPK=64166093&entityID=000158349_20090317093816. Accessed 12 Apr 2013.

  • Cho, Y., Lee, J., & Kim, T.-Y. (2007). The impact of ICT investment and energy price on industrial electricity demand: dynamic growth model approach. Energy Policy, 35(9), 4730–4738. doi:10.1016/j.enpol.2007.03.030.

    Article  Google Scholar 

  • Cho, W. G., Nam, K., & Pagan, J. A. (2004). Economic growth and interfactor/interfuel substitution in Korea. Energy Economics, 26(1), 31–50. doi:10.1016/j.eneco.2003.04.001.

    Article  Google Scholar 

  • Christensen, L. R., Jorgenson, D. W., & Lau, L. J. (1973). Transcendental logarithmic production frontiers. The Review of Economics and Statistics, 55(1), 28–45. doi:10.2307/1927992.

    Article  Google Scholar 

  • Chun, H., & Nadiri, M. I. (2008). Decomposing productivity growth in the U.S. computer industry. The Review of Economics and Statistics, 90(1), 174–180. doi:10.1162/rest.90.1.174.

    Article  Google Scholar 

  • Dargay, J. M. (1983). The demand for energy in Swedish manufacturing-industries. Scandinavian Journal of Economics, 85(1), 37–51. doi:10.2307/3439909.

    Article  Google Scholar 

  • Denny, M., Fuss, M. A., & Waverman, L. (1981). Substitution possibilities for energy: evidence from US and Canadian manufacturing industries. In E. R. Berndt & B. C. Field (Eds.), Modeling and measuring natural resource substitution (pp. 230–288). Cambridge: MIT Press.

    Google Scholar 

  • Diewert, W. E. (1971). An application of the Shephard duality theorem: a generalized Leontief production function. Journal of Political Economy, 79(3), 481–507. doi:10.2307/1830768.

    Article  Google Scholar 

  • Diewert, W. E. (1974). Functional forms for revenue and factor requirements functions. International Economic Review, 15(1), 119. doi:10.2307/2526093.

    Article  MathSciNet  MATH  Google Scholar 

  • Diewert, W. E., & Wales, T. J. (1987). Flexible functional forms and global curvature conditions. Econometrica, 55(1), 43–68. doi:10.2307/1911156.

    Article  MathSciNet  MATH  Google Scholar 

  • EIA (2011). International energy outlook. U.S. energy information administration. US Energy Information Administration. http://www.eia.gov/forecasts/ieo/pdf/0484(2011).pdf. Accessed 8 Sep 2013.

  • Eisner, R., Strotz, R. H., & Post, G. R. (1963). Determinants of business investment. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Epstein, L. G. (1981). Duality-theory and functional forms for dynamic factor demands. Review of Economic Studies, 48(1), 81–95. doi:10.2307/2297122.

    Article  MathSciNet  MATH  Google Scholar 

  • Erdmann, L., & Hilty, L. M. (2010). Scenario analysis exploring the macroeconomic impacts of information and communication technologies on greenhouse gas emissions. Journal of Industrial Ecology, 14(5), 826–834. doi:10.1111/j.1530-9290.2010.00277.x.

    Article  Google Scholar 

  • Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2000). The generalized dynamic-factor model: identification and estimation. The Review of Economics and Statistics, 82(4), 540–554. doi:10.1162/003465300559037.

    Article  MATH  Google Scholar 

  • Friedemann, M., Staake, T., & Weiss, M. ICT for green: how computers can help us to conserve energy. In Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking, Passau, Germany, 2010

  • Fukao, K., Miyagawa, T., Mukai, K., Shinoda, Y., & Tonogi, K. (2009a). Intangible investment in Japan: measurement and contribution to economic growth. Review of Income and Wealth, 55(3), 717–736. doi:10.1111/j.1475-4991.2009.00345.x.

    Article  Google Scholar 

  • Fukao, K., Miyagawa, T., & Pyo, H. K. (2009b). Estimates of multifactor productivity, ICT contributions and resource reallocation effects in Japan and Korea (RIETI Working Paper 09-E-021). The Research Institute of Economy, Trade and Industry. http://www.rieti.go.jp/jp/publications/dp/09e021.pdf. Accessed 12 May 2013.

  • Galeotti, M. (1990). Specification of the technology for neoclassical investment theory—testing the adjustment costs approach. The Review of Economics and Statistics, 72(3), 471–480. doi:10.2307/2109355.

    Article  Google Scholar 

  • Galeotti, M. (1996). The intertemporal dimension of neoclassical production theory. Journal of Economic Surveys, 10(4), 421–460. doi:10.1111/j.1467-6419.1996.tb00019.x.

    Article  MathSciNet  Google Scholar 

  • Gallant, A. R. (2008). Nonlinear statistical models (Wiley series in probability and statistics): Wiley.

  • GeSI SMARTer 2020 (2012). Smarter 2020: the role of ICT in driving a sustainable future. Global e-Sustainability Initiative. http://gesi.org/SMARTer2020. Accessed 20 Oct 2013.

  • Gordon, R. J. (2000). Does the ‘new economy’ measure up to the great inventions of the past. Journal of Economic Perspectives, 14(4), 49–74.

  • Groth, C. (2005). Estimating UK capital adjustment costs (working paper 258). Bank of England. http://www.bankofengland.co.uk/publications/Documents/workingpapers/wp258.pdf. Accessed 21 Apr 2013.

  • Gust, C., & Marquez, J. (2004). International comparisons of productivity growth: the role of information technology and regulatory practices. Labour Economics, 11(1), 33–58.

    Article  Google Scholar 

  • Hartman, R. S. (1979). Frontiers in energy demand modeling. Annual Review of Energy, 4(1), 433–466. doi:10.1146/annurev.eg.04.110179.002245.

    Article  Google Scholar 

  • Hempell, T. (2005). What’s spurious, what’s real? Measuring the productivity impacts of ICT at the firm-level. Empirical Economics, 30(2), 427–464. doi:10.1007/s00181-005-0248-6.

    Article  Google Scholar 

  • Heshmati, A. (2013). Demand, customer base-line and demand response in the electricity market: a survey. Journal of Economic Surveys. doi:10.1111/joes.12033.

    Google Scholar 

  • Hong, H.-J. (2011). The study on the impact of IT investment on demand for labor. International Institute of Informatics and Systemics.

  • IEA (2009). Progress with implementing energy efficiency policies in the G8. International Energy Agency.

  • IEA (2011). Climate & electricity annual: data and analysis. International Energy Agency. http://www.iea.org/publications/freepublications/. Accessed 20 Jun 2013.

  • Indjikian, R., & Siegel, D. S. (2005). The impact of investment in it on economic performance: implications for developing countries. World Development, 33(5), 681–700. doi:10.1016/j.worlddev.2005.01.004.

    Article  Google Scholar 

  • Ishida, H. (2015). The effect of ICT development on economic growth and energy consumption in Japan. Telematics and Informatics, 32(1), 79–88. doi:10.1016/j.tele.2014.04.003.

    Article  Google Scholar 

  • Jorgenson, D. W. (1963). Capital theory and investment behavior. The American Economic Review, 53(2), 247–259. doi:10.2307/1823868.

    Google Scholar 

  • Jorgenson, D. W., Ho, M. S., & Stiroh, K. J. (2008). A retrospective look at the U.S. productivity growth resurgence. The Journal of Economic Perspectives, 22(1), 3–24. doi:10.1257/089533008783601315.

    Article  Google Scholar 

  • Jorgenson, D. W., & Stiroh, K. J. (1999). Information technology and growth. American Economic Review, 89(2), 109–115. doi:10.1257/aer.89.2.109.

    Article  Google Scholar 

  • Kamerschen, D. R., & Porter, D. V. (2004). The demand for residential, industrial and total electricity, 1973–1998. Energy Economics, 26(1), 87–100. doi:10.1016/S0140-9883(03)00033-1.

    Article  Google Scholar 

  • Kanamori, T., & Motohashi, K. (2007). Information technology and economic growth: comparison between Japan and Korea. Research Institute of Economy, Trade and Industry (RIETI). http://ideas.repec.org/p/eti/dpaper/07009.html. Accessed 13 May 2013.

  • Kander, A., & Schön, L. (2007). The energy-capital relation—Sweden 1870–2000. Structural Change and Economic Dynamics, 18(3), 291–305. doi:10.1016/j.strueco.2007.02.002.

    Article  Google Scholar 

  • Ketteni, E., Mamuneas, T., & Pashardes, P. (2013). ICT and energy use: patterns of substitutability and complementarity in production. Cyprus Economic Policy Review, 7(1), 63–86.

    Google Scholar 

  • Khayyat, N. T. (2013). Exploring demand for energy in the South Korean industries. Zurich: SMC University.

    Google Scholar 

  • Khayyat, N. T., & Heshmati, A. (2014). Production risk, energy use efficiency and productivity of Korean industries. https://static.sys.kth.se/itm/wp/cesis/cesiswp359.pdf. Accessed 12 May 2014.

  • Kim, S. T. (1997). The role of local public sectors in regional economics growth in Korea. Asian Economic Journal, 11(2), 155–168.

    Article  Google Scholar 

  • Kim, S. J. (2002). Development of information technology industry and sources of economic growth and productivity in Korea. Journal of Economic Research-Seoul, 7(2), 177–214.

    Google Scholar 

  • Kim, J., & Heo, E. (2013). Asymmetric substitutability between energy and capital: evidence from the manufacturing sectors in 10 OECD countries. Energy Economics, 40(0), 81–89. doi:10.1016/j.eneco.2013.06.014.

    Article  Google Scholar 

  • Kim, J., & Heo, E. (2014). Effect of ICT capital on the demands for labor and energy in major industries of Korea, US, and UK. Environmental and Resource Economics Review, 23(1), 91–32.

    Article  Google Scholar 

  • Kim, H.-G., & Oh, J. H. (2004). The role of IT on the Korean economy under IMF control. Journal of Policy Modeling, 26(2), 181–190. doi:10.1016/j.jpolmod.2003.12.001.

    Article  Google Scholar 

  • Kim, M., & Park, Y. (2009). The changing pattern of industrial technology linkage structure of Korea: did the ICT industry play a role in the 1980s and 1990s? Technological Forecasting and Social Change, 76(5), 688–699. doi:10.1016/j.techfore.2008.03.009.

    Article  Google Scholar 

  • Koetse, M. J., de Groot, H. L. F., & Florax, R. J. G. M. (2008). Capital-energy substitution and shifts in factor demand: a meta-analysis. Energy Economics, 30(5), 2236–2251. doi:10.1016/j.eneco.2007.06.006.

    Article  Google Scholar 

  • Koschel, H. (2000). Substitution elasticities between capital, labour, material, electricity and fossil fuels in German producing and service sectors (discussion papers 00–31). http://www.zew.de/en/publikationen/publikation.php3?action=detail&nr=435 Accessed 12 May 2013.

  • Lau, L. J. (1986). Functional forms in econometric model building. In G. Zvi, & D. I. Michael (Eds.), Handbook of econometrics (vol. 3, pp. 1515–1566): Elsevier.

  • Lee, W. N., Kim, H. J., Park, J. B., Roh, J. H., & Cho, K. S. (2012). An economic evaluation of the energy efficiency programs in Korea. Journal of International Council on Electrical Engineering, 2(2), 219–224.

    Article  Google Scholar 

  • Liu, Y. (2009). Exploring the relationship between urbanization and energy consumption in China using ARDL (autoregressive distributed lag) and FDM (factor decomposition model). Energy, 34(11), 1846–1854. doi:10.1016/j.energy.2009.07.029.

    Article  Google Scholar 

  • Lu, I. J., Lin, S. J., & Lewis, C. (2007). Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea. Energy Policy, 35(6), 3226–3235. doi:10.1016/j.enpol.2006.11.003.

    Article  Google Scholar 

  • Lucas, R. E. (1967). Adjustment costs and the theory of supply. The Journal of Political Economy, 75(4), 321–334.

    Article  Google Scholar 

  • Matteucci, N., O’Mahony, M., Robinson, C., & Zwick, T. (2005). Productivity, workplace performance and ICT: industry and firm-level evidence for Europe and the US. Scottish Journal of Political Economy, 52(3), 359–386. doi:10.1111/j.0036-9292.2005.00349.x.

    Article  Google Scholar 

  • McFadden, D. (1978). Modelling the choice of residential location. California: Institute of Transportation Studies, University of California.

    Google Scholar 

  • Melville, N. P. (2010). Information systems innovation for environmental sustainability. MIS Quarterly, 34(1), 1–21.

    MathSciNet  Google Scholar 

  • Morana, C. (2007). Factor demand modelling: the theory and the practice. Applied Mathematical Sciences, 1(31), 1519–1549.

    MathSciNet  MATH  Google Scholar 

  • Morrison, C. J., & Berndt, E. R. (1981). Short-run labor productivity in a dynamic model. Journal of Econometrics, 16(3), 339–365. doi:10.1016/0304-4076(81)90034-8.

    Article  Google Scholar 

  • Mun, S. B. (2002). Computer adjustment costs: is quality improvement important? http://homepages.nyu.edu/~sbm210/research/itjq.pdf.

  • Mun, S. B. (2012). Computer adjustment costs: is quality improvement important? International Telecommunications Policy Review, 19(3), 23–51.

    Google Scholar 

  • Mun, S. B., & Nadiri, M. I. (2002). Information technology externalities: empirical evidence from 42 US industries (NBER Working Paper w9272). National Bureau of Economic Research Working Paper Series. http://www.nber.org/papers/w9272. Accessed 23 Mar 2012.

  • Nadiri, M. I., & Prucha, I. R. (1986). A comparison of alternative methods for the estimation of dynamic factor demand models under non-static expectations. Journal of Econometrics, 33(1), 187–211.

    Google Scholar 

  • Nadiri, M. I., & Prucha, I. R. (1990). Dynamic factor demand models, productivity measurement, and rates of return: theory and an empirical application to the US bell system. Structural Change and Economic Dynamics, 1(2), 263–289.

    Article  Google Scholar 

  • Nadiri, M. I., & Prucha, I. R. (1996). Estimation of the depreciation rate of physical and R&D capital in the U.S. total manufacturing sector. Economic Inquiry, 34(1), 43–56. doi:10.1111/j.1465-7295.1996.tb01363.x.

    Article  Google Scholar 

  • Nadiri, M. I., & Prucha, I. R. (1999). Dynamic factor demand models and productivity analysis (NBER working paper 7079). National Bureau of Economic Research Working Paper Series. http://www.nber.org/papers/w7079.pdf. Accessed 23 Mar 2012.

  • Nadiri, M. I., & Prucha, I. R. (2001). Dynamic factor demand models and productivity analysis. In C. R. Hulten, E. R. Dean, & M. J. Harper (Eds.), New developments in productivity analysis (pp. 103–172). Chicago: The University of Chicago Press.

    Chapter  Google Scholar 

  • Nadiri, M. I., & Rosen, S. (1969). Interrelated factor demand functions. The American Economic Review, 59(4), 457–471.

    Google Scholar 

  • O’Mahony, M., & Timmer, M. P. (2009). Output, input and productivity measures at the industry level: the EU KLEMS database. The Economic Journal, 119(538), F374–F403. doi:10.1111/j.1468-0297.2009.02280.x.

    Article  Google Scholar 

  • Oh, I., Lee, J.-D., & Heshmati, A. (2008). Total factor productivity in Korean manufacturing industries. Global Economic Review, 37(1), 23–50. doi:10.1080/12265080801911907.

    Article  Google Scholar 

  • Oliner, S. D., & Sichel, D. E. (2000). The resurgence of growth in the late 1990s: is information technology the story? (Working paper 2000–20). FEDS Working Paper. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=233139. Accessed 14 Jul 2013.

  • Park, P. (2000). A reflection on the East Asian development model: comparison of the South Korean and Taiwanese experiences. In R. Frank-Jurgen (Ed.), Thailand, Japan, and the East Asian development model (pp. 141–168). London: Macmillan.

    Google Scholar 

  • Park, S. (2014). Elasticity of substitution between ICT capital and labor: its implications on the creative economy in Korea. Paper presented at the 2014 Joint Conference of the Korean Economic Association, Sungkyunkwan University, Seoul, Korea, Feb 2

  • Park, G., & Park, Y. (2003). An empirical analysis of the inter-industrial spillover effect of information and communications technology on cost and labor—the case of Korea. Journal of Scientific & Industrial Research, 62(3), 157–167.

    Google Scholar 

  • Pilat, D., & Lee, F. C. (2001). Productivity growth in ICT-producing and ICT-using industries: A source of growth differentials in the OECD? (OECD working papers 2001/04). OECD Science, Technology and Industry. http://dx.doi.org/10.1787/774576300121. Accessed 3 Jan 2014.

  • Pindyck, R. S., & Rotemberg, J. J. (1983). Dynamic factor demands and the effects of energy price shocks. American Economic Review, 73(5), 1066–1079.

    Google Scholar 

  • Røpke, I., & Christensen, T. H. (2012). Energy impacts of ICT—insights from an everyday life perspective. Telematics and Informatics, 29(4), 348–361. doi:10.1016/j.tele.2012.02.001.

    Article  Google Scholar 

  • Rouvinen, P. (1999). R&D spillovers among Finnish manufacturing firms: a cost function estimation with random coefficients. Discussion papers no. 686. The Research Institute of the Finnish Economy.

  • Sadorsky, P. (2012). Information communication technology and electricity consumption in emerging economies. Energy Policy, 48(0), 130–136. doi:10.1016/j.enpol.2012.04.064.

    Article  Google Scholar 

  • Schulte, P., Welsch, H., & Rexhäuser, S. (2014). ICT and the demand for energy: evidence from OECD countries. Environmental and Resource Economics, 1–28, doi:10.1007/s10640-014-9844-2.

  • Seungdo, K., Hyeon-Kyeong, K., & Hyoung-Jun, K. Climate change and ICTs. In Telecommunications Energy Conference, 2009. INTELEC 2009. 31st International, October 2009 (pp. 1–4). doi:10.1109/INTLEC.2009.5351786.

  • Shephard, R. W. (1953). Cost and production functions. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Siegel, D. (1997). The impact of computers on manufacturing productivity growth: a multiple-indicators, multiple-causes approach. The Review of Economics and Statistics, 79(1), 68–78. doi:10.1162/003465397556548.

    Article  Google Scholar 

  • Smyth, R., Narayan, P. K., & Shi, H. (2011). Substitution between energy and classical factor inputs in the Chinese steel sector. Applied Energy, 88(1), 361–367. doi:10.1016/j.apenergy.2010.07.019.

    Article  Google Scholar 

  • Stiroh, K. J. (2002). Are ICT spillovers driving the new economy? Review of Income and Wealth, 48(1), 33–57. doi:10.1111/1475-4991.00039.

    Article  Google Scholar 

  • Stock, J. H., & Watson, M. W. (1989). New indexes of coincident and leading economic indicators. In O. Blanchard & S. Fischer (Eds.), NBER macroeconomics annual vol. 4 (pp. 351–409). Cambridge: MIT Press.

    Google Scholar 

  • Takase, K., & Murota, Y. (2004). The impact of IT investment on energy: Japan and US comparison in 2010. Energy Policy, 32(11), 1291–1301. doi:10.1016/S0301-4215(03)00097-1.

    Article  Google Scholar 

  • Thompson, H. (2006). The applied theory of energy substitution in production. Energy Economics, 28(4), 410–425. doi:10.1016/j.eneco.2005.01.005.

    Article  Google Scholar 

  • Toro, E. F. (2009). Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Uchiyama, Y. (2002). Present efforts of saving energy and future energy demand/supply in Japan. Energy Conversion and Management, 43(9–12), 1123–1131. doi:10.1016/S0196-8904(02)00003-1.

    Article  Google Scholar 

  • Varian, H. R. (1992). Macroeconomic analysis (3rd ed.). New York: Norton & Company, Inc.

    Google Scholar 

  • Walker, W. (1985). Information technology and the use of energy. Energy Policy, 13(5), 458–476. doi:10.1016/0301-4215(85)90102-8.

    Article  Google Scholar 

  • Walker, W. (1986). Information technology and energy supply. Energy Policy, 14(6), 466–488. doi:10.1016/0301-4215(86)90001-7.

    Article  Google Scholar 

  • Watanabe, C., Kishioka, M., & Carvajal, C. A. (2005). IT substitution for energy leads to a resilient structure for a survival strategy of Japan’s electric power industry. Energy Policy, 33(8), 1069–1084. doi:10.1016/j.enpol.2003.11.007.

    Article  Google Scholar 

  • Pyo, H. K., Rhee, K. H., & Chun, H. (2012). Asia KLEMS growth and productivity accounts—version 1.0 draft and proposal: part I methodology. Paper presented at the Second World KLEMS Conference, Harvard University in Cambridge, Massachusetts, August 9–10, 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabaz T. Khayyat.

Appendices

Appendix 1

Data sources and construction of the variables

Table 3 Definition of variables
Table 4 Constructed variables
Table 5 Industry sectors’ classification
Table 6 Summary statistics of the raw data, in 2005 prices—Korea, no. of obs. = 900
Table 7 Summary statistics of the raw data, in 2005 prices—Japan, no. of obs. 1020

Appendix 2

Parameter estimates

Table 8 Korea’s nonlinear FIML estimates—dynamic factor demand, 30 sectors (1980–2009)
Table 9 Japan’s nonlinear FIML estimates—dynamic factor demand, 30 sectors (1973–2006)
Table 10 Korea’s short- and long-run price and output elasticities for the studied three decades
Table 11 Korea’s short- and long-run price and output elasticities of knowledge- and nonknowledge-based industries
Table 12 Japan’s short- and long-run price and output elasticities for the three studied decades
Table 13 Japan’s short- and long-run price and output elasticities of knowledge- and nonknowledge-based industries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khayyat, N.T., Lee, J. & Heo, E. How ICT investment influences energy demand in South Korea and Japan. Energy Efficiency 9, 563–589 (2016). https://doi.org/10.1007/s12053-015-9384-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-015-9384-9

Keywords

JEL Classification

Navigation