Skip to main content
Log in

Lie group analysis of flow and heat transfer of non-Newtonian nanofluid over a stretching surface with convective boundary condition

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The steady two-dimensional flow and heat transfer of a non-Newtonian power-law nanofluid over a stretching surface under convective boundary conditions and temperature-dependent fluid viscosity has been numerically investigated. The power-law rheology is adopted to describe non-Newtonian characteristics of the flow. Four different types of nanoparticles, namely copper (Cu), silver (Ag), alumina (Al 2 O 3) and titanium oxide (TiO 2) are considered by using sodium alginate (SA) as the base non-Newtonian fluid. Lie symmetry group transformations are used to convert the boundary layer equations into non-linear ordinary differential equations. The transformed equations are solved numerically by using a shooting method with fourth-order Runge–Kutta integration scheme. The results show that the effect of viscosity on the heat transfer rate is remarkable only for relatively strong convective heating. Moreover, the skin friction coefficient and the rate of heat transfer increase with an increase in Biot number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. L J Crane, Z. Angew. Math. Phys. 21, 645 (1970)

    Article  Google Scholar 

  2. P S Gupta and A S Gupta, Can. J. Chem. Eng. 55, 744 (1977)

    Article  Google Scholar 

  3. L J Grubka and K M Bobba, ASME J. Heat Transfer 107, 248 (1985)

    Article  Google Scholar 

  4. N Bachok, A Ishak and R Nazar, Meccanica 46, 935 (2011)

    Article  Google Scholar 

  5. L Zheng, L Wang and X Zhang, Commun. Nonlinear Sci. Numer. Simul. 16, 731 (2011)

    Article  ADS  Google Scholar 

  6. E H Aly and K Vajravelu, Appl. Math. Comput. 232, 191 (2014)

    MathSciNet  Google Scholar 

  7. H I Andersson, K H Bech and B S Dandapat, Int. J. Non-Linear Mech. 27, 929 (1992)

    Article  Google Scholar 

  8. R Cortell, Appl. Math. Comput. 168, 557 (2005)

    MathSciNet  Google Scholar 

  9. S -J Liao, J. Fluid Mech. 488, 189 (2005)

    Article  ADS  Google Scholar 

  10. K V Prasad, S R Santhi and P S Datti, Appl. Math. 3, 425 (2012)

    Article  MathSciNet  Google Scholar 

  11. M Madhu and N Kishan, J. Egypt. Math. Soc. 24, 458 (2016)

    Article  Google Scholar 

  12. S U S Choi, ASME Fluids Eng. Div. 231, 99 (1995)

    Google Scholar 

  13. N Putra, W Roetzel and D K Das, Heat Mass Transfer 39, 775 (2003)

    Article  ADS  Google Scholar 

  14. J A Eastman, S U S Choi, S Li, W Yu and L J Thompson, Appl. Phys. Lett. 78, 718 (2001)

    Article  ADS  Google Scholar 

  15. J Buongiorno, J. Heat Transf. Trans. ASME 128, 240 (2006)

    Article  Google Scholar 

  16. M Abd El-Aziz, Int. J. Mod. Phys. C 24, 1 (2013)

    Article  Google Scholar 

  17. A A Afify and M A A Bazid, J. Comput. Theor. Nanosci. 11, 1844 (2014)

    Article  Google Scholar 

  18. K S Hwang, S P Jang and S U S Choi, Int. J. Heat Mass Transfer 52, 193 (2009)

    Article  Google Scholar 

  19. K Das, Microfluid Nanofluid 15, 267 (2013)

    Article  Google Scholar 

  20. P Loganathan and C Vimala, Indian J. Phys. 88, 855 (2014)

    Article  ADS  Google Scholar 

  21. R Kamali and A R Binesh, Int. Commun. Heat Mass Transfer 37, 1153 (2010)

    Article  Google Scholar 

  22. M Hojjat, S G Etemad, R Bagheri and J Thibault, Int. Commun. Heat Mass Transfer 38, 144 (2011)

    Article  Google Scholar 

  23. S S Pawar and V K Sunnapwa, Exp. Therm. Fluid Sci. 44, 792 (2013)

    Article  Google Scholar 

  24. M Hatami and D D Ganji, J. Mol. Liq. 188, 155 (2013)

    Article  Google Scholar 

  25. M Hatami and D D Ganji, Case Studies Therm. Eng. 2, 14 (2014)

    Article  Google Scholar 

  26. A Esmaeilnejad, H Aminfar and M S Neistanak, Int. J. Therm. Sci. 75, 76 (2014)

    Article  Google Scholar 

  27. Y Lin, L Zheng and X Zhang, Int. J. Heat Mass Transfer 77, 708 (2014)

    Article  Google Scholar 

  28. O D Makinde and A Aziz, Int. J. Therm. Sci. 53, 2477 (2011)

    Google Scholar 

  29. S Nadeem, R Mehmood and N S Akbar, Int. J. Therm. Sci. 78, 90 (2014)

    Article  Google Scholar 

  30. E Abu-Nada, Int. J. Heat Fluid Flow 30, 679 (2009)

    Article  Google Scholar 

  31. K Vajravelu and K V Prasad, J. Mech. 28, 579 (2012)

    Article  Google Scholar 

  32. A A Afify and M A A Bazid, J. Comput. Theor. Nanosci. 11, 2440 (2014)

    Article  Google Scholar 

  33. H F Oztop and E Abu-Nada, Int. J. Heat Fluid Flow 29, 1326 (2008)

    Article  Google Scholar 

  34. X Wang, X Xu and S U S Choi, J. Thermophys. Heat Transfer 13, 474 (1999)

    Article  Google Scholar 

  35. J Maxwell, A treatise on electricity and magnetism 2nd edn (Oxford University Press, Cambridge, UK, 1904)

    Google Scholar 

  36. Y Khana, Q Wua, N Faraz and A Yildirim, Comput. Math. Appl. 61, 3391 (2011)

    Article  MathSciNet  Google Scholar 

  37. M S Abel, P S Datti and N Mahesha, Int. J. Heat Mass Transfer 52, 2902 (2009)

    Article  Google Scholar 

  38. M Jalil and S Asghar, Int. J. Nonlinear Mech. 48, 65 (2013)

    Article  ADS  Google Scholar 

  39. M B Akgül and M Pakdemi, Sci. Iran. 19, 1534 (2012)

    Article  Google Scholar 

  40. T Tapanidis, Gr Tsagas and H P Mazumdar, Nonlinear Funct. Anal. Appl. 8, 345 (2003)

    MathSciNet  Google Scholar 

  41. A A Afify and N S Elgazery, Nonlinear Anal. Model. Control 17, 1 (2012)

    MathSciNet  Google Scholar 

  42. A G Hansen, Similarity analysis of boundary layer problems in engineering (Prentice Hall, Englewood Cliffs, NJ, USA, 1964)

    Google Scholar 

  43. A Pantokratoras, Int. J. Heat Mass Transfer 45, 963 (2002)

    Article  Google Scholar 

  44. A Pantokratoras, Int. J. Eng. Sci. 42, 1891 (2004)

    Article  Google Scholar 

  45. M M Rahman, M A Rahman, M A Samad and M S Alam, Int. J. Thermophys. 30, 1649 (2009)

    Article  ADS  Google Scholar 

  46. H I Andersson and V Kumaran, Int. J. Non-Linear Mech. 41, 1228 (2006)

    Article  ADS  Google Scholar 

  47. R Cortell, J. Mater. Process. Technol. 203, 76 (2008)

    Google Scholar 

  48. R Cortell, Appl. Math. Comput. 217, 7564 (2011)

    MathSciNet  Google Scholar 

  49. T Grosan and I Pop, J. Heat Transfer 133, 054503 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the reviewers for their encouraging comments and constructive suggestions to improve the presentation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AHMED A AFIFY.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AFIFY, A.A., EL-AZIZ, M.A. Lie group analysis of flow and heat transfer of non-Newtonian nanofluid over a stretching surface with convective boundary condition. Pramana - J Phys 88, 31 (2017). https://doi.org/10.1007/s12043-016-1336-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1336-1

Keywords

PACS Nos

Navigation