Skip to main content
Log in

Analysis of the superconductivity in perovskite oxides using three-square-well BCS formalism

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Superconductivity in perovskite, BaKBiO, is studied in the Bardeen–Cooper–Schrieffer (BCS) model, with three-square-well potentials. Components of the new coupling are: the attractive acoustic phonon–electron, optical phonon–electron and repulsive Coulomb interactions. With these in the BCS pairing Hamiltonian, expressions for the superconducting transition temperature and isotope effect exponent are obtained. Results of our analysis are consistent with experiments. Contributions of interactions to system properties are exhibited and analysed. Acoustic phonon–electron and optical phonon–electron interactions have near-identical elevation of transition temperature, holding out possible explanations for high- T c. Contrastingly, optical phonon–electron and Coulomb couplings cause debilitation of isotope exponent, a possible explanation for low isotope exponent in the cuprates and other high- T c systems. It is found that BCS electron–phonon coupling appears synonymous with acoustic phonon–electron coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. J R Cava et al, Nature 332, 814 (1988)

  2. D G Hinks et al, Nature 333, 836 (1988)

  3. M Kato et al, J. Phys: Conf. Ser. 150, 052100 (2009)

  4. S Larsson, Physica C 468, 113 (2008)

  5. J Bardeen, L N Cooper and J R Schrieffer, Phys. Rev. 108, 1175 (1957)

  6. D Varshney, R P Kumhar and R K Singh, J. Supercond. 14, 623 (2001)

  7. C K Loong et al, Phys. Rev. Lett. 66, 3217 (1991)

  8. G E Tsydynzhapov et al, JETP Lette. 83, 405 (2006)

  9. Q Huang et al, Nature 347, 369 (1990)

  10. N Tralshwala et al, Phys. Rev. B 51, 3812 (1995)

  11. P Samuley et al, Phys. Rev. B 48, 13904 (1993)

  12. M Shirai, N Suzuki and K Motizuki, J. Phys.: Condens. Matter 2, 3553 (1990)

  13. N Hamada, Phys. Rev. B 40, 4442 (1989)

  14. H Sato et al, Phys. Rev. B 48, 6617 (1993)

  15. J F Zasadzinski et al, Physica C 158, 519 (1989)

  16. G Zhao, Phys. Rev. B 76, 020501 (2007)

  17. J E Graebner, L F Schneemeyer and J K Thomas, Phys. Rev. B 39, 9682(R) (1989)

  18. H J Kaufmann, O V Dolgov and E K H Salje, Phys. Rev. B 58, 9449 (1998)

  19. A I Liechstenstein et al, Phys. Rev. B 44, 5388(R) (1991)

  20. K Kunc and R Zeyher, Phys. Rev. B 49, 12216 (1994)

  21. M Meregalli and S Y Savrasov, Phys. Rev. B 57, 14453 (1998)

  22. K Marsiglio et al, Phys. Rev. B 53, 9433 (1996)

  23. B Batlogg et al, Phys. Rev. Lett. 61, 1670 (1988)

  24. K F McCarty et al, Phys. Rev. B 40, 2662(R) (1989)

  25. C K Loong et al, Phys. Rev. Lett. 62, 2628 (1989)

  26. M Braden et al, Europhys. Lett. 34, 531 (1996)

  27. H Sato, H Takagi and S Uchida, Physica C 169, 391 (1990)

  28. A Taraphder et al, Phys. Rev. B 52, 1368 (1995)

  29. C M Varma, Phys. Rev. Lett. 61, 2713 (1988)

  30. P W Anderson, Phys. Rev. Lett. 34, 953 (1975)

  31. I Hase and T Yanagisawa, Physica C 468, 1129 (2008)

  32. G Vielsack and W Weber, Phys. Rev. B 54, 6614 (1996)

  33. W A Harrison, Phys. Rev. B 74, 245128 (2006)

  34. Z P Yin, A Kutepov and G Kotliar, Phys. Rev. X 3, 021011 (2013)

  35. J Ahmad and H Uwe, Phys. Rev. B 72, 125103 (2005)

  36. M Merz et al, Europhys. Lett. 72, 275 (2005)

  37. P Udomsamuthirun, Pramana – J. Phys. 66, 589 (2006)

  38. V L Ginzburg and D A Kirzhnits (eds), High-temperature superconductivity (Plenum Publishing Corporation, New York, 1982)

  39. L L Daemen and A W Overhauser, Phys. Rev. B 41, 7182 (1990)

  40. P G deGennes, Superconductivity of metals and alloys (Westview Press, USA, 1999)

  41. J B Ketterson and S N Song, Superconductivity (Cambridge University Press, Cambridge, 1999)

  42. S P Tewari and P K Gumber, Physica C 171, 147 (1990)

  43. H Shimahara, J. Phys. Soc. Jpn 72, 1851 (2003)

  44. O V Dolgov et al, Phys. Rev. Lett. 95, 257003 (2005)

  45. T Örd and N Kristoffel, Physica C 370, 17 (2002)

  46. P Konsin and B Sorkin, J. Supercond. Nov. Magn. 18, 101 (2005)

  47. P Udomsamuthirun et al, Paper presented at 31st Congress on Science and Technology of Thailand (Suranaree University of Technology, 18–20 Oct., 2005)

  48. O C Abah, G C Asomba and C M I Okoye, Solid State Commun. 149, 1510 (2009)

  49. O A Ogbuu et al, Physica C 471, 444 (2011)

  50. R Chaudhury and S S Jha, Pramana – J. Phys. 22, 431 (1984)

  51. V Z Kresin, S A Wolf and H Morawitz, Mechanism of conventional and high-temperature superconductivity (Oxford University Press, New York, 1993)

  52. S Kondoh et al, Physica C 157, 469 (1989)

  53. D G Hinks et al, Nature 335, 419 (1988)

  54. G Zhao and D E Morris, Phys. Rev. B 51, 848 (1995)

  55. E S Hellman et al, Phys. Rev. B 44, 9719 (1991)

  56. D Varshney and M P Tosi, J. Phys. Chem. Solids 61, 683 (2000)

  57. H Khosroabadi et al, J. Supercond. Nov. Magn. 23, 1385 (2010)

  58. H Khosroabadi et al, Phys. Rev. B 83, 224525 (2011)

  59. H J Kang et al, Physica C 471, 303 (2011)

  60. A I Golovashkin et al, J. Phys. Ser. 150, 042043 (2009)

  61. X-Y Su, J Shen and L-Y Zhang, Phys. Lett. A 143, 489 (1990)

  62. M Tinkham, Introduction to superconductivity (Dover Publications, 2004)

  63. O C Abah, G C Asomba and C M I Okoye, Supercond. Sci. Technol. 23, 045031 (2010)

  64. A V Beluschin et al, Physica C 199, 103 (1992)

  65. I M Khalatnikov and A Abriksov, Adv. Phys. 8, 45 (1959)

  66. P B Allen and R C Dynes, Phys. Rev. B 12, 905 (1975)

Download references

Acknowledgement

The authors thank the referee for the valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O ABAH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ASOMBA, G.C., ABAH, O., OGBUU, O.A. et al. Analysis of the superconductivity in perovskite oxides using three-square-well BCS formalism. Pramana - J Phys 85, 1233–1244 (2015). https://doi.org/10.1007/s12043-015-0944-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-015-0944-5

Keywords

PACS Nos

Navigation