Skip to main content
Log in

Comparison of backstepping and modified active control in projective synchronization of chaos in an extended Bonhöffer–van der Pol oscillator

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this article, projective synchronization of double–scroll attractor of an extended Bonöffer–van der Pol oscillator (BVPO) is considered via the backstepping and active control techniques. In each synchronization scheme, a single control function is designed to achieve projective synchronization between two Bonhöffer–van der Pol oscillator evolving from different initial conditions. To obtain a single control function via the active control, the coefficient of the error dynamics is chosen such that the number of control functions is reduced from three to one, thereby, reducing control function complexity in design. The results show that the transient error dynamics convergence and synchronization time are achieved faster via the backstepping than that of the active control technique. However, the control function obtained via the active control is simpler with a more stable synchronization time and hence, it is more suitable for practical implementation. Numerical simulations are presented to confirm the effectiveness of the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Z-Y Liu, C-J Liu, M-C Ho, Y-C Haung, T-F Hsu and I-M Jiang, Int. J. Bifurcat. Chaos 18(2), 3731 (2008)

    Article  MATH  Google Scholar 

  2. L M Pecora and T L Carrol, Phys. Rev . Lett. 64, 821 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  3. Y Li, J Zhang and Z Li, Int. J. Nonlinear Sci. 1(3), 131 (2006)

    MathSciNet  ADS  Google Scholar 

  4. S Zhu and L Wu, Int. J. Mod. Phys. B 18, 2547 (2004)

    Article  ADS  Google Scholar 

  5. Z Zhang and G Hu, Phys. Rev . E 62, 7882 (2000)

    Article  ADS  Google Scholar 

  6. O Calvo, D R Chialvo, V M Eguituz, C R Mirasso and R Toral, Chaos 14, 7 (2004)

    Article  ADS  Google Scholar 

  7. R Mainieri and J Rehacek, Phys. Rev . Lett. 82, 3042 (1999)

    Article  ADS  Google Scholar 

  8. G-H Li, Chaos, Solitons and Fractals 30, 71 (2005)

    Google Scholar 

  9. H Chen and M Chen, Int. J. Nonlinear Sci. 2(3), 166 (2006)

    MathSciNet  Google Scholar 

  10. H-L Zhu and X-B Zhang, J. Information and Computing Sci. 4(1), 33 (2009)

    ADS  Google Scholar 

  11. M Sun, L Tian, S Jian and J Xu, Chaos, Solitons and Fractals 32, 1725 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. G Cai, J Huang, L Tian and Q Wang, Int. J. Nonlinear Sci. 2(1), 1725 (2006)

    Google Scholar 

  13. M Jiang and C-K Chen, Int. J. Bifurcat. Chaos 12, 1437 (2002)

    Article  Google Scholar 

  14. A N Njah and K S Ojo, Far East J. Dynamical Systems 11(2), 143 (2009)

    MathSciNet  MATH  Google Scholar 

  15. A N Njah and U E Vincent, J. Sound and Vibrations 319, 41 (2009)

    Article  ADS  Google Scholar 

  16. Y Lei, K-L Yung and Y Xu, J. Sound and Vibration 329, 973 (2010)

    Article  ADS  Google Scholar 

  17. Y Lei, W Xu, J Shen and T Fang, Chaos, Solitons and Fractals 28, 428 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Z Zhang, Y Wang and Z Du, Appl. Math. Comput. 218, 6833 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Z Zhang, H Shen and J Li, Appl. Math. Comput. 218, 4260 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. E W Bai and K E Lonngren, Chaos, Solitons and Fractals 8, 51 (1997)

    Article  ADS  MATH  Google Scholar 

  21. M C Ho and Y C Hung, Phys. Lett. 301, 424 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Y Lie, W Xu, J Shen and F Fang, Chaos, Solitons and Fractals 28, 428 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  23. A N Njah, J. Sound and Vibrations 327, 322 (2009)

    Article  ADS  Google Scholar 

  24. M Krstic, I Kanellakopoulus and P O Kokotovic, Nonlinear and adaptiv e control design (John Wiley, New York, 1995)

    Google Scholar 

  25. H Zheng, X Ma, M Li and J Zou, Chaos, Solitons and Fractals 26, 353 (2005)

    Article  ADS  Google Scholar 

  26. X Tian, J Zhang and Y Yang, Chaos, Solitons and Fractals 16, 37 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  27. S Mascolo, Backstepping design for design Lorenz chaos, Procceding 36th IEEE CDC (San Diego, CA) pp. 1500–1501

  28. D Paydafar, F L Eldridge and J A Paydafar, The J. Physiol. 506, 515 (1998)

    Article  Google Scholar 

  29. R Fitzhugh, Biophys. J. 1, 445 (1961)

    Article  Google Scholar 

  30. S Rajasekar and M Lakshmanan, Physica D 67, 146 (1993)

    Article  MathSciNet  Google Scholar 

  31. M Ramesh and S Nayaranan, Chaos, Solitons and Fractals 12, 2395 (2001)

    Article  ADS  MATH  Google Scholar 

  32. J Lu and J Chen, Int. J. Bifurcat. Chaos 16, 775 (2006)

    Article  Google Scholar 

  33. M E Yalcin, Cellular neural networks, multi-scroll chaos and synchronization: Theory, application and implication, Ph.D. thesis (Katholieke University Leuven, Belgium, 2004)

  34. M E Yalcin, J A Suykens and J Vandewalle, Cellular neural networks, multi-scroll chaos and synchronization (World Scientific, Singapore, 2005)

    MATH  Google Scholar 

  35. S M Yu, Z G Ma, S S Qiu, S G Peng and Q H Lin, Chin. Phys. 13, 317 (2004)

    Article  ADS  Google Scholar 

  36. Y Nishiuchi, T Ueta and H Kawakami, Chaos, Solitons and Fractals 27, 941 (2006)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K S OJO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

OJO, K.S., NJAH, A.N. & OGUNJO, S.T. Comparison of backstepping and modified active control in projective synchronization of chaos in an extended Bonhöffer–van der Pol oscillator. Pramana - J Phys 80, 825–835 (2013). https://doi.org/10.1007/s12043-013-0526-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0526-3

Keywords

PACS

Navigation