Skip to main content
Log in

Fermionic particles with position-dependent mass in the presence of inversely quadratic Yukawa potential and tensor interaction

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Approximate solutions of the Dirac equation with position-dependent mass are presented for the inversely quadratic Yukawa potential and Coulomb-like tensor interaction by using the asymptotic iteration method. The energy eigenvalues and the corresponding normalized eigenfunctions are obtained in the case of position-dependent mass and arbitrary spin-orbit quantum number k state and approximation on the spin-orbit coupling term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G Bastard, Wav e mechanics applied to semiconductor heterostructure (Les Editions de Physique, Les Ulis, 1988)

  2. P Harrison, Quantum wells, wires and dots (Wiley, New York, 2000) L Serra and E Lipparini, Europhys. Lett. 40, 667 (1997)

  3. F Arias de Saavedra, J Boronat, A Polls and A Fabrocini, Phys. Rev . B50, 4248 (1994)

    ADS  Google Scholar 

  4. T Gora and F Williams, Phys. Rev . 177, 1179 (1969)

    Article  ADS  Google Scholar 

  5. A R Plastino, A Rigo, M Casas, F Garcias and A Plastino, Phys. Rev . A60, 4318 (1999)

    ADS  Google Scholar 

  6. A de Souza Dutra and C A S Almeida, Phys. Lett. A275, 25 (2000)

    ADS  Google Scholar 

  7. A D Alhaidari, Phys. Rev . A66, 042116 (2002) A D Alhaidari, Int. J. Theor. Phys. 42, 2999 (2003)

  8. B Roy and P Roy, J. Phys. A35, 3961 (2002)

    ADS  Google Scholar 

  9. R Koç, M Koca and E Körcük, J. Phys. A35, L527 (2002) R Koç, M Koca and G Sahinoglu, Eur. Phys. J. B48, 583 (2005)

    Google Scholar 

  10. B Gönül, O Özer, B Gönül and F Üzgün, Mod. Phys. Lett. A17, 2453 (2002) B Gönül, B Gönül, D Tutcu and O Özer, ibid. 17, 2057 (2002)

  11. B Bagchi, P Gorain, C Quesne and R Roychoudhury, Mod. Phys. Lett. A19, 2765 (2004) C Quesne and V M Tkachuk, J. Phys. A37, 4267 (2004) C Quesne, Ann. Phys. N.Y. 321, 1221 (2006)

  12. O Panella, S Biondini and A Arda, J. Phys. A: Math. Theor. 43, 325302 (2010)

    Article  MathSciNet  Google Scholar 

  13. A D Alhaidari, Phys. Rev . A75, 042707 (2007) A D Alhaidari, H Bahlouli, A Al Hasan and M S Abdelmonem, Phys. Rev . A75, 062711 (2007) A Alhaidari, Phys. Lett. A322, 72 (2004)

  14. A de Souza Dutra and C-S Jia, Phys. Lett. 352, 484 (2006) I O Vakarchuk, J. Phy. A: Math. Gen. 38, 4727 (2005)

  15. S M Ikhadair and R Sever, Appl. Math. Comput. 216, 911 (2010)

    Article  MathSciNet  Google Scholar 

  16. C-S Jia, T Chen and L-G Cui, Phys. Lett. A373, 1621 (2009)

    MathSciNet  ADS  Google Scholar 

  17. C-S Jia and A de Souza Dutra, Ann. Phys. 323, 566 (2008)

    Article  ADS  MATH  Google Scholar 

  18. L Dekar, L Chetouani and T F J Hammann, Math. Phys. 39, 2551 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. X-L Penz, J-Y Liu and C-S Jia, Phys. Lett. A352, 478 (2006)

    ADS  Google Scholar 

  20. D Agboola, math-ph/arXiv:1011.2368v1, preprint

  21. H Ciftci, R L Hall and N Saad, J. Phys. A36, 11807 (2003)

    MathSciNet  ADS  Google Scholar 

  22. H Ciftci, R L Hall and N Saad, J. Phys. A38, 1147 (2005)

    MathSciNet  ADS  Google Scholar 

  23. H Ciftci, R L Hall and N Saad, Phys. Rev . A72, 022101 (2005)

    MathSciNet  ADS  Google Scholar 

  24. O Aydogdu and R Sever, Phys. Scr. 84, 025005 (2011)

    Article  Google Scholar 

  25. M R Setare and S Haidari, Phys. Scr. 81, 065201 (2010)

    Article  ADS  Google Scholar 

  26. B Gulveren, A Demirtas and R Ogul, Phys. Scr. 64, 277 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. M Hamzavi, S M Ikhdair and B I Ita, Phys. Scr. 85, 045009 (2012)

    Article  Google Scholar 

  28. S M Ikhdair and R Sever, Appl. Math. Com. 216, 911 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. L H Zhang, X P Li and C S Jia, Phys. Lett. A372, 2201 (2008)

    MathSciNet  ADS  Google Scholar 

  30. A Soylu, O Bayrak and I Boztosun, J. Phys. A: Math. Theor. 41, 065308 (2008)

    Article  MathSciNet  Google Scholar 

  31. N Saad, Phys. Scr. 76, 623 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. N M Temme, Special functions: An introduction to the classical functions of mathematical physics (Wiley, New York, 1996) §11.3

    Book  MATH  Google Scholar 

  33. R L Hall, Phys. Lett. A372, 12 (2007)

    ADS  Google Scholar 

  34. A D Alhaidari, H Bahlouli and A Al-Hasan, Phys. Lett. A349, 87 (2006)

    MathSciNet  ADS  Google Scholar 

  35. T Barakat, M Odeh and O Mustafa, J. Phys. A31, 3469 (1998)

    ADS  Google Scholar 

  36. S Ikhdair, Eur. Phys. J. A40, 143 (2009)

    ADS  Google Scholar 

  37. A D Alhaidari, Phys. Lett. A322, 72 (2004)

    MathSciNet  ADS  Google Scholar 

  38. G B Arfken and H J Weber, Mathematical methods for physicists (Academic Press, San Diego 1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F YASUK.

Appendix

Appendix

To normalize the wave functions, some of the special procedures for the beta function is given in the following form [3238]:

  1. (i)
    $$ B_q \left( {x+1,y} \right)=\dfrac{x}{x+y}B_q \left( {x,y} \right)-\dfrac{q^x\left( {1-q} \right)^y}{x+y}, $$
  2. (ii)
    $$ {\begin{array}{lll} I_q \left( {x,y} \right)&=&I_q \left( {x-1,y} \right)-\dfrac{q^{x-y}\left( {1-q}\right)^y}{x+y}\\ &=&I_q \left( {x-2,y} \right)-\dfrac{q^{x-2}\left( {1-q} \right)^y}{\left( {x-2} \right)B\left( {x-2,y} \right)}-\dfrac{q^{x-1}\left( {1-q} \right)^y}{\left( {x-1} \right)B\left( {x-1,y} \right)} \\ &=&I_q \left( {x-3,y} \right)-\dfrac{q^{x-3}\left( {1-q} \right)^y}{\left( {x-3} \right)B\left( {x-3,y} \right)}-\dfrac{q^{x-2}\left( {1-q} \right)^y}{\left( {x-2} \right)B\left( {x-2,y} \right)} \\ &&{\kern12pt}-\dfrac{q^{x-1}\left( {1-q} \right)^y}{\left( {x-1} \right)B\left( {x-1,y} \right)}\\ &=&\cdots \\ &=&I_q \left( {x-m,y} \right)-q^x\left( {1-q} \right)^y\sum\limits_{k=1}^m {\dfrac{q^{-k}}{\left( {x-k} \right)B\left( {x-k,y} \right)},} \\ m&=&1,2,..., \\ \end{array} }$$
  3. (iii)
    $${\begin{array}{lll} B_q{\kern-2pt}\left({x,y} \right)&=\dfrac{q^x{\kern-2pt}\left( {1-q} \right)^{y-1}}{x}\sum\limits_{k=0}^\infty {\dfrac{\left( {1-y} \right)_k }{\left( {1+x} \right)_k }} \left( {\dfrac{q}{q-1}} \right)^k \\[8pt] &=\dfrac{q^x\!\left({1\!-\!q} \right)^{y-1}}{x}{ }_2F_1 \!\left(\!{1,\!1\!-\!y;1\!+\!x;\!\dfrac{q}{q\!-\!1}} \!\right)\\[8pt] \end{array}} $$

    for \( \;q\!\in\! \left({-\infty ,0} \right)\!\cup\! ({0,\frac{1}{2}}) \) and

    $$ {\begin{array}{lll} B_q \left( {x,y} \right)&=&B\left( {x,y} \right)-\dfrac{q^{x-1}\left( {1-q} \right)^y}{y}\sum\limits_{k=0}^\infty {\dfrac{\left( {1-x} \right)_k }{\left( {1+y} \right)_k }} \left( {\dfrac{q-1}{q}} \right)^k \\ &=&B\left( {x,y} \right)-\dfrac{q^{x-1}\left( {1-q} \right)^y}{y}{ }_2F_1 \left( {1,1-x;1+y;\dfrac{q-1}{q}} \right), \\ \end{array} } $$
  4. (iv)

    \(\left( a \right)_{i+j} =\left( a \right)_i \left( {a+i} \right)_j .\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

BAHAR, M.K., YASUK, F. Fermionic particles with position-dependent mass in the presence of inversely quadratic Yukawa potential and tensor interaction. Pramana - J Phys 80, 187–197 (2013). https://doi.org/10.1007/s12043-012-0483-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0483-2

Keywords

PACS Nos

Navigation