Skip to main content
Log in

Five-fold way to new high T c superconductors

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Discovery of high T c superconductivity in La2−x Ba x CuO4 by Bednorz and Muller in 1986 was a breakthrough in the 75-year long search for new superconductors. Since then new high T c superconductors, not involving copper, have also been discovered. Superconductivity in cuprates also inspired resonating valence bond (RVB) mechanism of superconductivity. In turn, RVB theory provided a new hope for finding new superconductors through a novel electronic mechanism. This article first reviews an electron correlation-based RVB mechanism and our own application of these ideas to some new noncuprate superconducting families. In the process we abstract, using available phenomenology and RVB theory, that there are five directions to search for new high T c superconductors. We call them five-fold way. As the paths are reasonably exclusive and well-defined, they provide more guided opportunities, than before, for discovering new superconductors. The five-fold ways are (i) copper route, (ii) pressure route, (iii) diamond route, (iv) graphene route and (v) double RVB route. Copper route is the doped spin-½ Mott insulator route. In this route one synthesizes new spin-½ Mott insulators and dopes them chemically. In pressure route, doping is not external, but internal, a (chemical or external) pressure-induced self-doping suggested by organic ET-salts. In the diamond route we are inspired by superconductivity in boron-doped diamond and our theory. Here one creates impurity band Mott insulators in a band insulator template that enables superconductivity. Graphene route follows from our recent suggestion of superconductivity in doped graphene, a two-dimensional broadband metal with moderate electron correlations, compared to cuprates. Double RVB route follows from our recent theory of doped spin-1 Mott insulator for superconductivity in iron pnictide family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A Bednorz and A Muller, Z. Phys. B64, 189 (1986)

    Article  ADS  Google Scholar 

  2. M Cohen and P W Anderson, in: Superconductivity in d- and f-band metals edited by D H Douglass (AIP, New York, 1972) p. 17

    Google Scholar 

  3. P W Anderson, Science 235, 1196 (1987)

    Article  ADS  Google Scholar 

  4. K H Hock, H Nickisch and H Thomas, Helv. Phys. Acta 56, 237 (1983)

    Google Scholar 

  5. G Baskaran, Phys. Rev. Lett. 90, 197007 (2003)

    Google Scholar 

  6. F C Zhang, Phys. Rev. Lett. 90, 207002 (2003)

    Google Scholar 

  7. G Baskaran and E Tosatti, Curr. Sci. 61, 33 (1991)

    Google Scholar 

  8. G Baskaran, J. Phys. Chem. Solids 56, 1957 (1995); Physica B223-224, 490 (1996); Phys. Rev. Lett. 91, 097003 (2003)

    Article  ADS  Google Scholar 

  9. G Baskaran, J. Supcond. Nov. Magnetism 21, 45 (2008); Sci. Technol. Adv. Mater. 7, S49 (2006); Sci. Technol. Adv. Mater. 9, 044104 (2008)

    Article  Google Scholar 

  10. S Pathak, V Shenoy and G, Baskaran, arXiv:0809.0244

  11. G Baskaran, J. Phys. Soc. Jpn. 77, 113713 (2008)

    Google Scholar 

  12. D Jerome, Science 252, 1509 (1991)

    Article  ADS  Google Scholar 

  13. C Bourbonnais and D Jerome, in: Advances in synthetic metals edited by B Bernier et al (Elsevier, 1999) p. 206

  14. T Vuletic et al, E. Phys. J. B25, 319 (2002)

    ADS  Google Scholar 

  15. T Ishiguro et al, Organic superconductor (Springer, Berlin, 1998)

    Google Scholar 

  16. E A Ekimov et al, Nature (London) 428, 542 (2004)

    Article  ADS  Google Scholar 

  17. E Bustarret et al, Phys. Rev. Lett. 93, 237005 (2004)

  18. Y Takano et al, Appl. Phys. Lett. 85, 2852 (2004)

    ADS  Google Scholar 

  19. Y Kamihara, J. Am. Chem. Soc. 128, 10012 (2006)

    Google Scholar 

  20. Y Kamihara et al, J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  21. W A Little, Phys. Rev. 134, A1416 (1964)

    Article  ADS  Google Scholar 

  22. V L Ginzburg, Sov. Phys. Usp. 13, 335 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  23. L Pauling, Nature of the chemical bond (Cornell University Press, NY, 1960)

    Google Scholar 

  24. P W Anderson, Mater. Res. Bull. 30, 1108 (1971)

    Google Scholar 

  25. E H Lieb and F Y Wu, Phys. Rev. Lett. 20, 1445 (1968)

    Article  ADS  Google Scholar 

  26. S A Kivelson, D Rokhsar and J Sethna, Phys. Rev. B38, 8865 (1987)

    ADS  Google Scholar 

  27. S Liang, B Doucot and P W Anderson, Phys. Rev. Lett. 61, 365 (1988)

    Article  ADS  Google Scholar 

  28. T Hsu, Phys. Rev. B41, 11379 (1990)

    ADS  Google Scholar 

  29. G Baskaran, Z Zou and P W Anderson, Solid State Commun. 63, 973 (1987)

    Article  ADS  Google Scholar 

  30. A Kitaev, Ann. Phys. 303, 2 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. G Baskaran and R Shankar (in preparation)

  32. G Baskaran, Phys. Rev. B64, 092508 (2001)

  33. G Baskaran and P W Anderson, Phys. Rev. B37, 580 (1988)

    ADS  Google Scholar 

  34. I Affleck et al, Phys. Rev. B38, 745 (1988)

    ADS  Google Scholar 

  35. I Affleck and J B Marston, Phys. Rev. B37, 3774 (1988)

    ADS  Google Scholar 

  36. G Kotliar, Phys. Rev. B37, 3664 (1988)

  37. C Gros, R Joynt and T M Rice, Z. Phys. B68, 425 (1987)

    Article  ADS  Google Scholar 

  38. F C Zhang and T M Rice, Phys. Rev. B37, 3759 (1988)

    ADS  Google Scholar 

  39. P W Anderson, G Baskaran, Z Zou and T Hsu, Phys. Rev. Lett. 58, 2790 (1987)

    Article  ADS  Google Scholar 

  40. G Baskaran, Mod. Phys. Lett. B14, 377 (2000)

    ADS  Google Scholar 

  41. G Baskaran, Phys. Rev. Lett. 91, 097003 (2003)

    Google Scholar 

  42. P W Anderson and G Baskaran (unpublished 1987)

  43. A Ramirez, Superconductivity Rev. 1, 1 (1994)

    Google Scholar 

  44. O Zhou et al, Phys. Rev. B52, 483 (1995)

    ADS  Google Scholar 

  45. H Schulz et al, J. Physique-Lett. 279, L–51 (1981)

    Google Scholar 

  46. L N Bulaevski, Adv. Phys. 37, 443 (1988)

    Article  ADS  Google Scholar 

  47. T Gimamarchi, Physica B230-232, 975 (1997)

    ADS  Google Scholar 

  48. H Kino and H Fukuyama, J. Phys. Soc. Jpn 64, 2726 (1995)

    Article  ADS  Google Scholar 

  49. M M Abd-Elmeguid et al, Phys. Rev. Lett. 93, 126403 (2004)

    Google Scholar 

  50. M Capone et al, Science 296, 2364 (2002)

    Article  ADS  Google Scholar 

  51. N F Mott, Phil. Mag. 6, 287 (1961)

    Article  ADS  Google Scholar 

  52. V Vescoli et al, Science 281, 1181 (1998)

    Article  ADS  Google Scholar 

  53. L Degiorgi (private communication)

  54. B N Brockhouse, Phys. Rev. 54, 781 (1954)

    Google Scholar 

  55. X G Zheng et al, Phys. Rev. Lett. 85, 5170 (2000)

    Article  ADS  Google Scholar 

  56. I Loa et al, Phys. Rev. Lett. 87, 125501 (2001)

  57. J P Locquet, Nature (London) 394, 453 (1998)

    Article  ADS  Google Scholar 

  58. The author thank ‘http://www.sxc.hu/home’ for making the blue diamond picture available for our use

  59. M Milovanovic, S Sachdev and R N Bhatt, Phys. Rev. Lett. 63, 82 (1989); 48, 597 (1982)

    Article  ADS  Google Scholar 

  60. M A Paalanen et al, Phys. Rev. Lett. 61, 597 (1988)

    Article  ADS  Google Scholar 

  61. M Lakner et al, Phys. Rev. 50, 17064 (1994)

  62. R N Bhatt and T M Rice, Phys. Rev. B23, 1920 (1981)

    ADS  Google Scholar 

  63. R N Bhatt and P A Lee, Phys. Rev. Lett. 48, 344 (1982)

    Article  ADS  Google Scholar 

  64. P W Anderson et al, J. Phys.: Condense Matter 24, R755 (2004)

    Article  Google Scholar 

  65. G Baskaran, Iran. J. Phys. Res. 6, 163 (2006)

    Google Scholar 

  66. B Sacepe et al, Phys. Rev. Lett. 96, 097006 (2006)

  67. A Therese Pushpam and T Navaneethakrishnan, Solid State Commun. 144, 153 (2007)

    Article  ADS  Google Scholar 

  68. Erik Nielsen and R N Bhatt, arXiv:0705.2038

  69. Superconducting ‘dome’ was theoretically predicted first in the paper, PW Anderson et al, Phys. Rev. Lett. 58, 2790 (1987)

    Article  ADS  Google Scholar 

  70. E Bustarret et al, Nature (London) 444, 465 (2006)

    Article  ADS  Google Scholar 

  71. Z A Ren et al, J. Phys. Soc. Jpn 76, 103710 (2007)

  72. T Shirakawa, S Horiuchi and H Fukuyama, J. Phys. Soc. Jpn 76, 014711 (2007)

    Google Scholar 

  73. E A Ekimov et al, Sci. Technol. Adv. Mater. 9, 044210 (2008)

    Google Scholar 

  74. N Dubrovinskaia et al, Appl. Phys. Lett. 92, 132506 (2008)

    Google Scholar 

  75. D S Fisher et al, Phys. Rev. Lett. 61, 482 (1988)

    Article  ADS  Google Scholar 

  76. G Baskaran, unpublished

  77. M Alaeia, S Akbar Jafari and H Akbarzadeha, arXiv:0807.4882 (to appear in J. Phys. Chem. Solids)

  78. T Venkatesan, National University of Singapore, Project on ’superhydrogenic State Superconductivity’

  79. J Nagamatsu et al, Nature (London) 410, 63 (2001)

    Article  ADS  Google Scholar 

  80. A K Geim and K S Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  81. M I Katsnelson, Mater. Today 10, 20 (2007)

    Article  Google Scholar 

  82. A H Castro Neto et al, arXiv.org:0709.1163 (2008)

  83. G Baskaran, Phys. Rev. B65, 212505 (2002)

  84. A M Black-Schaffer and S Doniach, Phys. Rev. B75, 134512 (2007)

    Google Scholar 

  85. B Uchoa and A H Castro Neto, Phys. Rev. Lett. 98, 146801 (2007)

    Google Scholar 

  86. T C Choy and B A McKinnon, Phys. Rev. B52, 14539 (1995)

    Google Scholar 

  87. N Furukawa, J. Phys. Soc. Jpn 70, 1483 (2001)

    Article  ADS  Google Scholar 

  88. S Onari et al, Phys. Rev. 68, 024525 (2003)

  89. D Baeriswyl and E Jackelman, in: The Hubbard model: Its physics and mathematical physics edited by D Baeriswyl (Plenum, New York, 1995) p. 393

    Google Scholar 

  90. G Baskaran and S A Jafari, Phys. Rev. Lett. 89, 016402 (2002)

    Google Scholar 

  91. D Ceperley, G Chester and M Kalos, Phys. Rev. 65, 1032 (1977)

    Google Scholar 

  92. M C Gutzwiller, Phys. Rev. 137, A1726 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  93. H Shiba, in: Two-dimensional strongly correlated electron systems edited by Zi-zhao Gan and Zhao-bin Su (Gordon and Breach Science Publishers, 1989)

  94. A Paramekanti, M Randeria and N Trivedi, Phys. Rev. 70, 054504 (2004)

    Google Scholar 

  95. S Florens and A Georges, Phys. Rev. 70, 035114 (2004)

  96. E Zhou and A Paramekanti, Phys. Rev. 76, 195101 (2007)

    Google Scholar 

  97. C Honerkamp, Phys. Rev. Lett. 100, 146404 (2008)

    Google Scholar 

  98. T M Klapwijk, Nat. Phys. 1, 17 (2005)

    Article  Google Scholar 

  99. T E Weller et al, Nat. Phys. 1, 39 (2005)

    Article  Google Scholar 

  100. R R da-Silva, J H S Torres and Y Kopelevich, Phys. Rev. Lett. 87, 147001 (2001)

    Google Scholar 

  101. Y Kopelevich and P Esquinazi, J. Low Temp. Phys. 146, 5 (2007)

    Article  Google Scholar 

  102. S Lebedev, arXiv:0802.4197 (2008)

  103. Y Jiang et al, Phys. Rev. B77, 235420 (2008)

  104. Hai-Hu Wen et al, cond-mat/0803.3021

  105. Z A Ren et al, cond-mat/0803.4234

  106. G F Chen et al, cond-mat/0803.4384

  107. Z A Ren et al, cond-mat/0803.4283

  108. F D M Haldane, Phys. Rev. Lett. 50, 1153 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  109. I Affleck et al, Phys. Rev. Lett. 59, 799 (1987)

    Article  ADS  Google Scholar 

  110. M den Nijs and K Rommelse, Phys. Rev. 40, 4709 (1989)

    Article  Google Scholar 

  111. S M Girvin and D P Arovas, Phys. Scr. T27, 156 (1989)

    Article  ADS  Google Scholar 

  112. S Lebegue, Phys. Rev. B75, 035110 (2007)

  113. D J Singh and M-H Du, cond-mat/0803.0429

  114. K Haule et al, cond-mat/0803.1279

  115. G Xu et al, cond-mat/0803.1282

  116. Chao Cao et al, cond-mat/0803.3236

  117. Hai-Jun Zhang et al, cond-mat/0803.4487

  118. L Boeri et al, cond-mat/0803.2703

  119. Gang Xu et al, cond-mat/0803.1282

  120. K Kuroki, cond-mat/0803.3325

  121. Xi Dai et al, cond-mat/0803.3982

  122. I I Mazin et al, cond-mat/0803.2740

  123. F Marsiglio and J E Hirsch, cond-mat/0804.0002

  124. Tao Li, cond-mat/0804.0536

  125. G Giovannetti et al, cond-mat/0804.0866

  126. S Raghu et al, cond-mat/0804.1113

  127. J C Inkson and P W Anderson, Phys. Rev. B8, 4429 (1973)

    ADS  Google Scholar 

  128. D Allender, J Bray and J Bardeen, Phys. Rev. B8, 4433 (1973)

    ADS  Google Scholar 

  129. D Allender, J Bray and J Bardeen, Phys. Rev. B7, 1020 (1973)

    ADS  Google Scholar 

  130. P W Anderson, Phys. Rev. Lett. 34, 953 (1975)

    Article  ADS  Google Scholar 

  131. B K Chakraverty and C Schlenker, J. Phys. (Paris) Colloq. 37, C4–353 (1976)

    Article  Google Scholar 

  132. A Alexandrov and J Ranninger, Phys. Rev. B23, 1796 (1981)

    ADS  Google Scholar 

  133. N W Ashcroft, Phys. Rev. Lett. 92, 187002 (2004)

    Google Scholar 

  134. G Baskaran, Phys. Canada 56, 236 (2000)

    Google Scholar 

  135. S Kivelson, Physica B318, 61 (2002)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Baskaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baskaran, G. Five-fold way to new high T c superconductors. Pramana - J Phys 73, 61–112 (2009). https://doi.org/10.1007/s12043-009-0094-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-009-0094-8

Keywords

PACS Nos

Navigation