Skip to main content

Advertisement

Log in

Transiently expressed pattern during myogenesis and candidate miRNAs of Tmem8C in goose

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Transmembrane protein 8C (Tmem8C) is a muscle-specific membrane protein that controls myoblast fusion, which is essential for the formation of multinucleated muscle fibres. As most of the birds can fly, they have enormous requirement for the muscle, but there are only a few studies of Tmem8C in birds. In this study, we obtained the coding sequence (CDS) of Tmem8C in goose, predicted miRNAs that can act on the 3′UTR, analysed expression profiles of this gene in breast and leg muscles (BM and LM) during the embryonic period and neonatal stages, and identified miRNAs that might affect the targeted gene. The results revealed a high homology between Tmem8C in goose and other animals (indicated by sequence comparisons and phylogenetic trees), some conservative characteristics (e.g., six transmembrane domains and two E-boxes in the 5′UTR might be the potential binding sites of muscle regulatory factors (MRFs)), and the d N/d S ratio indicated purifying selection acting on this gene, facilitating conservatism in vertebrates. Q-PCR indicated Tmem8C had a peak expression pattern, reaching its highest expression levels in stage E15 in LM and E19 in BM, and then dropping transiently in E23 (P<0.05). We examined 13 candidate miRNAs, and negative relationships were detected both in BM and LM (mir-125b-5p, mir-15a, mir-16-1 and mir-n23). Notably, mir-16-1 significantly decreased luciferase activity in dual luciferase reporter gene (LRG) assay, suggesting that it can be identified as potential factors affecting Tmem8C. This study investigated Tmem8C in water bird for the first time, and provided useful information about this gene and its candidate miRNAs in goose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bartel D. P. 2004 MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Biggar K. K., Dubuc A. and Storey K. 2009 MicroRNA regulation below zero: differential expression of miRNA-21 and miRNA-16 during freezing in wood frogs. Cryobiology 59, 317–321.

    Article  CAS  PubMed  Google Scholar 

  • Boutet S. C., Cheung T. H., Quach N. L., Liu L., Prescott S. L., Edalati A., Iori K. and Rando T. A. 2012 Alternative polyadenylation mediates microRNA regulation of muscle stem cell function. Cell Stem Cell 10, 327–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennecke J., Stark A., Russell R. B. and Cohen S. M. 2005 Principles of microRNA-target recognition. PLoS Biol. 3, e85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckingham M. and Rigby P. W. 2014 Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev. Cell 28, 225–238.

    Article  CAS  PubMed  Google Scholar 

  • Campos-Juanatey F., Gutierrez-Baños J. L., Portillo-Martin J. A. and Zubillaga-Guerrero S. 2015 Assessment of the urodynamic diagnosis in patients with urinary incontinence associated with normal pressure hydrocephalus. Neurourol. Urodynam. 34, 465–468.

    Article  Google Scholar 

  • Charrin S., Latil M., Soave S., Polesskaya A., Christien F., Boucheix C. and Rubinstein E. 2013 Normal muscle regeneration requires tight control of muscle cell fusion by tetraspanins CD9 and CD81. Nat. Commun. 4, 1674.

    Article  PubMed  Google Scholar 

  • Doherty K. R., Cave A., Davis D. B., Delmonte A. J., Posey A., Earley J. U. et al. 2005 Normal myoblast fusion requires myoferlin. Development 132, 5565–5575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goljanek-Whysall K., Sweetman D., Abu-Elmagd M., Chapnik E., Dalmay T., Hornstein E. and Monsterberg A. 2011 MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis. Proc. Nat. Acad. Sci. 108, 11936–11941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu L., Xu T., Huang W., Xie M., Sun S. and Hou S. 2014 Identification and profiling of microRNAs in the embryonic breast muscle of Pekin duck. PLoS One 9, e86150.

    Article  PubMed  PubMed Central  Google Scholar 

  • Landemaine A., Rescan P. -Y. and Gabillard J. -C. 2014 Myomaker mediates fusion of fast myocytes in zebrafish embryos. Biochem. Biophys. Res. Commun. 451, 480–484.

    Article  CAS  PubMed  Google Scholar 

  • Li G., Miskimen K. L., Wang Z., Xie X. Y., Brenzovich J., Ryan J. J., Tse W. et al. 2010a STAT5 requires the N-domain for suppression of miR15/16, induction of bcl-2, and survival signaling in myeloproliferative disease. Blood 115, 1416–1424.

  • Li L., Liu H. -H., Xu F., Si J. -M., Jia J. and Wang J. -W. 2010b MyoD expression profile and developmental differences of leg and breast muscle in Peking duck (Anas platyrhynchos Domestica) during embryonic to neonatal stages. Micron 41, 847–852.

  • Li T., Wu R., Zhang Y. and Zhu D. 2011 A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics 12, 186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H. -H., Wang J. -W., Li L., Han C. -C., Huang K. -L., Si J. -M. et al. 2011 Molecular evolutionary analysis of the duck MYOD gene family and its differential expression pattern in breast muscle development. Brit. Poultry Sci. 52, 423–431.

    Article  CAS  Google Scholar 

  • Liu N., Williams A. H., Maxeiner J. M., Bezprozvannaya S., Shelton J. M., Richardson J. A., Bassel-Duby R. and Olson E. N. 2012 MicroRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J. Clin. Invest. 122, 2054–2065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo W., Li E., Nie Q. and Zhang X. 2015 Myomaker, regulated by MYOD, MYOG and miR-140-3p, promotes chicken myoblast fusion. Int. J. Molec. Sci. 16, 26186–26201.

    Article  CAS  Google Scholar 

  • Millay D. P., O’Rourke J. R., Sutherland L. B., Bezprozvannaya S., Shelton J. M., Bassel-Duby R. and Olson E. N. 2013 Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature 499, 301–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millay D. P., Sutherland L. B., Bassel-Duby R. and Olson E. N. 2014 Myomaker is essential for muscle regeneration. Genes and Devel. 28, 1641.

    Article  CAS  Google Scholar 

  • Nie M., Deng Z. -L., Liu J. and Wang D. -Z. 2015 Noncoding RNAs, emerging regulators of skeletal muscle development and diseases. BioMed. Res. Int. 2015, 676575.

    PubMed  PubMed Central  Google Scholar 

  • Relaix F., Montarras D., Zaffran S., Gayraud-Morel B., Rocancourt D., Tajbakhsh S. et al. 2006 Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J. Cell Biol. 172, 91–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N. and Nei M. 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Scott G. R., Richards J. G. and Milsom W. K. 2009 Control of respiration in flight muscle from the high-altitude bar-headed goose and low-altitude birds. Am. J. Phys.-Regul. Integrat. Compar. Phys. 297, R1066–R1074.

    CAS  Google Scholar 

  • Sohn R. L., Huang P., Kawahara G., Mitchell M., Guyon J., Kalluri R. et al. 2009 A role for nephrin, a renal protein, in vertebrate skeletal muscle cell fusion. Proc. Nat. Acad. Sci. 106, 9274–9279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M. and Kumar S. 2011 MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec. Biol. Evol. 28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas M., Langley B., Berry C., Sharma M., Kirk S., Bass J. and Kambadur R. 2000 Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem. 275, 40235–40243.

    Article  CAS  PubMed  Google Scholar 

  • Vasyutina E., Martarelli B., Brakebusch C., Wende H. and Birchmeier C. 2009 The small G-proteins Rac1 and Cdc42 are essential for myoblast fusion in the mouse. Proc. Nat. Acad. Sci. 106, 8935–8940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yafe A., Shklover J., Weisman-Shomer P., Bengal E. and Fry M. 2008 Differential binding of quadruplex structures of muscle-specific genes regulatory sequences by MyoD, MRF4 and myogenin. Nucleic Acids Res. 36, 3916–3925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S., Liu X., Li X., Sun S., Sun F., Fan B. and Zhao S. 2013 MicroRNA-124 reduces caveolar density by targeting caveolin-1 in porcine kidney epithelial PK15 cells. Molec. Cell. Biochem. 384, 213–219.

    Article  CAS  PubMed  Google Scholar 

  • Zhu C., Gi G., Tao Z., Song C., Zhu W., Song W. and Li H. 2014 Development of skeletal muscle and expression of myogenic regulatory factors during embryonic development in Jinding ducks (Anas platyrhynchos domestica). Poultry Sci. 93, 1211–1216.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by National Natural Science Foundation of China (31372349), and the scientific research Foundation of Zhejiang A&F University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AYONG ZHAO.

Additional information

Corresponding editor: Indrajit Nanda

[He K., Ren T., Zhu S., Liang S. and Zhao A. 2017 Transiently expressed pattern during myogenesis and candidate miRNAs of Tmem8C in goose. J. Genet. 96, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

HE, K., REN, T., ZHU, S. et al. Transiently expressed pattern during myogenesis and candidate miRNAs of Tmem8C in goose. J Genet 96, 39–46 (2017). https://doi.org/10.1007/s12041-016-0737-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-016-0737-8

Keywords

Navigation