Skip to main content
Log in

LcMKK, a MAPK kinase from Lycium chinense, confers cadmium tolerance in transgenic tobacco by transcriptional upregulation of ethylene responsive transcription factor gene

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a highly toxic element to plants. Ethylene is an important phytohormone in the regulation of plant growth, development and stress response. Mitogen-activated protein kinase (MAPK) activation has been observed in plants exposed to Cd stress and was suggested to be involved in ethylene biosynthesis. We hypothesized that there may be a link between MAPK cascades and ethylene signalling in Cd-stressed plants. To test this hypothesis, the expression of LcMKK, LchERF and LcGSH1 genes, endogenous ethylene accumulation, GSH content and Cd concentration in Lycium chinense with or without Cd stress treatment were studied. Our results showed that LcMKK gene expression can be induced by the treatment of Cd in L. chinense. The transgenic tobacco expressing 35S::LcMKK showed greater tolerance to Cd stress and enhanced expression of NtERF and NtGSH1 genes, indicating that LcMKK is associated with the enhanced expression level of ERF and GSH synthesis-related genes in tobacco. We also found that endogenous ethylene and GSH content can be induced by Cd stress in L. chinense, and inhibited by cotreatment with PD98059, an inhibitor of MAPK kinase. Evidences presented here suggest that under Cd stress, GSH accumulation occurred at least partially by enhanced LcMKK gene expression and the ethylene signal transduction pathways might be involved in this accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Asano N., Kato A., Miyauchi M., Kizu H., Tomimori T., Matsui K. et al. 1997 Specific α-galactosidase inhibitors, N-methylcalystegines structure/activity relationships of calystegines from Lycium chinense. Eur. J. Biochem. 248, 296–303.

    Article  CAS  PubMed  Google Scholar 

  • Chae H. S. and Kieber J. J. 2005 Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci. 10, 291–296.

    Article  CAS  PubMed  Google Scholar 

  • Chmielowska-Bąk J., Lefèvre I., Lutts S. and Deckert J. 2013 Short term signaling responses in roots of young soybean seedlings exposed to cadmium stress. J. Plant Physiol. 170, 1585–1594.

    Article  PubMed  Google Scholar 

  • Clemens S., Aarts M. G., Thomine S. and Verbruggen N. 2013 Plant science: the key to prevent slow cadmium poisoning. Trends Plant Sci. 18, 92–99.

    Article  CAS  PubMed  Google Scholar 

  • Cristina M. S., Petersen M. and Mundy J. 2010 Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61, 621–649.

    Article  Google Scholar 

  • de Knecht J. A., van Dillen M., Koevoets P. L., Schat H., Verkleij J. A. and Ernst W. H. 1994 Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris (chain length distribution and sulfide incorporation). Plant Physiol. 104, 255–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong J. Z., Wang Y., Wang S. H., Yin L. P., Xu G. J., Zheng C. et al. 2013 Selenium increases chlorogenic acid, chlorophyll and carotenoids of Lycium chinense leaves. J. Sci. Food Agric. 93, 310–315.

    Article  CAS  PubMed  Google Scholar 

  • Guan C., Ji J., Guan W., Feng Y., Li X., Jin C. et al. 2014a A Lycium chinense-derived P5CS-like gene is regulated by water deficit-induced endogenous abscisic acid and overexpression of this gene enhances tolerance to water deficit stress in Arabidopsis. Mol. Breed. 34, 1109–1124.

    Article  CAS  Google Scholar 

  • Guan C., Liu X., Song X., Wang G., Ji J. and Jin C. 2014b Overexpression of a peroxiredoxin Q gene, SsPrxQ, in Eustoma grandiflorum Shinn enhances its tolerance to salt and high light intensity. Mol. Breed. 33, 657–667.

    Article  CAS  Google Scholar 

  • Guan C., Ji J., Jia C., Guan W., Li X., Jin C. et al. 2015a A GSHS-like gene from Lycium chinense may be regulated by cadmium-induced endogenous salicylic acid and overexpression of this gene enhances tolerance to cadmium stress in Arabidopsis. Plant Cell Rep. 34, 871–884.

    Article  CAS  PubMed  Google Scholar 

  • Guan C., Ji J., Wu D., Li X., Jin C., Guan W. et al. 2015b The glutathione synthesis may be regulated by cadmium-induced endogenous ethylene in Lycium chinense, and overexpression of an ethylene responsive transcription factor gene enhances tolerance to cadmium stress in tobacco. Mol. Breed. 35, 123–136.

    Article  Google Scholar 

  • Guan C., Jin C., Ji J., Wang G. and Li X. 2015c LcBiP, a endoplasmic reticulum chaperone binding protein gene from Lycium chinense, confers cadmium tolerance in transgenic tobacco. Biotechnol. Prog. 31, 358–368.

    Article  CAS  PubMed  Google Scholar 

  • Hamel L. -P., Nicole M. -C., Sritubtim S., Morency M. -J., Ellis M., Ehlting J. et al. 2006 Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci. 11, 192–198.

    Article  CAS  PubMed  Google Scholar 

  • Han L., Li G. J., Yang K. Y., Mao G., Wang R., Liu Y. et al. 2010 Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant J. 64, 114–127.

    CAS  PubMed  Google Scholar 

  • Huang X. -S., Liu J. -H. and Chen X. -J. 2010 Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol. 10, 230.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung W. -C., Huang D. -D., Yeh C. -M. and Huang H. -J. 2005 Reactive oxygen species, calcium and serine/threonine phosphatase are required for copper-induced MAP kinase gene OsMAPK2, expression in rice. Plant Growth Regul. 45, 233–241.

    Article  CAS  Google Scholar 

  • Iakimova E., Kapchina-Toteva V., de Jong A., Atanassov A. and Woltering E. 2005 Involvement of ethylene, oxidative stress and lipid-derived signals in cadmium-induced programmed cell death in tomato suspension cells. BMC Plant Biol. 5 (suppl 1), S19.

    Article  Google Scholar 

  • Iqbal N., Masood A., Khan M. I. R., Asgher M., Fatma M. and Khan N. A. 2013 Cross-talk between sulfur assimilation and ethylene signaling in plants. Plant Signal. Behav. 8, 1–9.

    Article  Google Scholar 

  • Jonak C., Nakagami H. and Hirt H. 2004 Heavy metal stress: activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol. 136, 3276–3283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo S., Liu Y., Lueth A. and Zhang S. 2008 MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant J. 54, 129–140.

    Article  CAS  PubMed  Google Scholar 

  • Khan M. I. R. and Khan N. A. 2014 Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma 251, 1007–1019.

    Article  CAS  PubMed  Google Scholar 

  • Király L., Künstler A., Höller K., Fattinger M., Juhász C., Müller M. et al. 2012 Sulfate supply influences compartment specific glutathione metabolism and confers enhanced resistance to tobacco mosaic virus during a hypersensitive response. Plant Physiol. Biochem. 59, 44–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar K., Rao K. P., Sharma P. and Sinha A. K. 2008 Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress. Plant Physiol. Biochem. 46, 891–897.

    Article  CAS  PubMed  Google Scholar 

  • Li G., Meng X., Wang R., Mao G., Han L., Liu Y. et al. 2012 Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet. 8, e1002767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler H. K. 1987 Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382.

    Article  CAS  Google Scholar 

  • Lin Z., Zhong S. and Grierson D. 2009 Recent advances in ethylene research. J. Exp. Bot. 60, 3311–3336.

    Article  CAS  PubMed  Google Scholar 

  • Liu H., Wang Y., Xu J., Su T., Liu G. and Ren D. 2008a Ethylene signaling is required for the acceleration of cell death induced by the activation of AtMEK5 in Arabidopsis. Cell Res. 18, 422–432.

    Article  CAS  PubMed  Google Scholar 

  • Liu K., Shen L. and Sheng J. 2008b Improvement in cadmium tolerance of tomato seedlings with an antisense DNA for 1-aminocyclopropane-1-carboxylate synthase. J. Plant Nutr. 31, 809–827.

    Article  CAS  Google Scholar 

  • Liu X. -M., Kim K. E., Kim K. -C., Nguyen X. C., Han H. J., Jung M. S. et al. 2010 Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry 71, 614–618.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y. and Zhang S. 2004 Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16, 3386–3399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W., Chu X., Li Y., Wang C. and Guo X. 2013 Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defence responses to pathogen infection in transgenic Nicotiana benthamiana. PLoS One 8, e68503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masood A., Iqbal N., Khan M. I. R. and Khan N. A. 2012a The coordinated role of ethylene and glucose in sulfur-mediated protection of photosynthetic inhibition by cadmium. Plant Signal. Behav. 7, 1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masood A., Iqbal N. and Khan N. A. 2012b Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ. 35, 524–533.

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Cózatl D. G., Jobe T. O., Hauser F. and Schroeder J. I. 2011 Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr. Opin. Plant Biol. 14, 554–562.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagami H., Pitzschke A. and Hirt H. 2005 Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci. 10, 339–346.

    Article  CAS  PubMed  Google Scholar 

  • Noctor G., Mhamdi A., Chaouch S., Han Y., Neukermans J., Marquez-Garcia B. et al. 2012 Glutathione in plants: an integrated overview. Plant Cell Environ. 35, 454–484.

    Article  CAS  PubMed  Google Scholar 

  • Opdenakker K., Remans T., Vangronsveld J. and Cuypers A. 2012 Mitogen-activated protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int. J. Mol. Sci. 13, 7828–7853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao K. P., Richa T., Kumar K., Raghuram B. and Sinha A. K. 2010 In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res. 17, 139–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Serrano M., Romero-Puertas M. C., Pazmiño D. M., Testillano P. S., Risueño M. C., Luis A. et al. 2009 Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol. 150, 229–243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rong W., Qi L., Wang A., Ye X., Du L., Liang H. et al. 2014 The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol. J. 12, 468–479.

    Article  CAS  PubMed  Google Scholar 

  • Sanità di Toppi L. and Gabbrielli R. 1999 Response to cadmium in higher plants. Environ. Exp. Bot. 41, 105–130.

    Article  Google Scholar 

  • Schmidt R., Mieulet D., Hubberten H. -M., Obata T., Hoefgen R., Fernie A. R. et al. 2013 Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25, 2115–2131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semane B., Cuypers A., Smeets K., Van Belleghem F., Horemans N., Schat H. et al. 2007 Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol. Plant 129, 519–528.

    Article  CAS  Google Scholar 

  • Shan X., Yan J. and Xie D. 2012 Comparison of phytohormone signaling mechanisms. Curr. Opin. Plant Biol. 15, 84–91.

    Article  CAS  PubMed  Google Scholar 

  • Tamura K., Dudley J., Nei M. and Kumar S. 2007 MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Wang G., Du X., Ji J., Guan C., Li Z. and Josine T. L. 2015 De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis. Gene 555, 458–463.

    Article  CAS  PubMed  Google Scholar 

  • Wu D., Ji J., Wang G., Guan C. and Jin C. 2014 LchERF, a novel ethylene-responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco. Plant Cell Rep. 12, 2033–2045.

    Article  Google Scholar 

  • Wu D., Ji J., Wang G., Guan W., Guan C., Jin C. et al. 2015 LcMKK, a novel group, a mitogen-activated protein kinase kinase gene in Lycium chinense, confers dehydration and drought tolerance in transgenic tobacco via scavenging ROS and modulating expression of stress-responsive genes. Plant Growth Regul. 76, 269–279.

    Article  CAS  Google Scholar 

  • Xing Y., Jia W. and Zhang J. 2008 AtMKK1 mediates ABA-induced CAT1 expression and H 2 O 2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J. 54, 440–451.

    Article  CAS  PubMed  Google Scholar 

  • Xiong L. and Yang Y. 2003 Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15, 745–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J., Li Y., Wang Y., Liu H., Lei L., Yang H. et al. 2008 Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J. Biol. Chem. 283, 26996–27006.

    Article  CAS  PubMed  Google Scholar 

  • Yeh C. -M., Hsiao L. -J. and Huang H. -J. 2004 Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice. Plant Cell Physiol. 45, 1306–1312.

    Article  CAS  PubMed  Google Scholar 

  • Yeh C. -M., Chien P. -S. and Huang H. -J. 2007 Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J. Exp. Bot. 58, 659–671.

    Article  CAS  PubMed  Google Scholar 

  • Yoo S. -D., Cho Y. -H., Tena G., Xiong Y. and Sheen J. 2008 Dual control of nuclear EIN3 by bifurcate MAPK cascades in C 2 H 4 signalling. Nature 451, 789–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H. and Forman H. J. 2012 Glutathione synthesis and its role in redox signaling. Semin. Cell Dev. Biol. 23, 722–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B., Shang S., Jabeen Z. and Zhang G. 2014 Involvement of ethylene in alleviation of Cd toxicity by NaCl in tobacco plants. Ecotoxicol. Environ. Saf. 101, 64–69.

    Article  CAS  PubMed  Google Scholar 

  • Zhang G., Chen M., Li L., Xu Z., Chen X., Guo J. et al. 2009 Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J. Exp. Bot. 60, 3781– 3796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R., Ah Kang K., Piao M. J., Kim K. C., Kim A. D., Chae S. et al. 2010 Cytoprotective effect of the fruits of Lycium chinense Miller against oxidative stress-induced hepatotoxicity. J. Ethnopharmacol. 130, 299–306.

    Article  PubMed  Google Scholar 

  • Zheng G., Zheng Z., Xu X. and Hu Z. 2010 Variation in fruit sugar composition of Lycium barbarum L. and Lycium chinense Mill. of different regions and varieties. Biochem. Syst. Ecol. 38, 275–284.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (31401391), Tianjin Research Programme of Application Foundation and Advanced Technology (no. 15JCQNJC14700) and the Scientific Research Foundation for the returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JING JI or GANG WANG.

Additional information

Corresponding editor: JITENDRA KHURANA

[Guan C., Ji J., Li X., Jin C. and Wang G. 2016 LcMKK, a MAPK kinase from Lycium chinense, confers cadmium tolerance in transgenic tobacco by transcriptional upregulation of ethylene responsive transcription factor gene. J. Genet. 95, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GUAN, C., JI, J., LI, X. et al. LcMKK, a MAPK kinase from Lycium chinense, confers cadmium tolerance in transgenic tobacco by transcriptional upregulation of ethylene responsive transcription factor gene. J Genet 95, 875–885 (2016). https://doi.org/10.1007/s12041-016-0710-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-016-0710-6

Keywords

Navigation