Skip to main content
Log in

Identification of QTL for maize grain yield and kernel-related traits

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Grain yield (GY) is one of the most important and complex quantitative traits in maize (Zea mays L.) breeding practice. Quantitative trait loci (QTLs) for GY and three kernel-related traits were detected in a set of recombinant inbred lines (RILs). One hundred and seven simple sequence repeats (SSRs) and 168 insertion/deletion polymorphism markers (Indels) were used to genotype RILs. Eight QTLs were found to be associated with four yield-related traits: GY, 100-kernel weight (HKW), 10-kernel length (KL), and 10-kernel length width (KW). Each QTL explained between 5.96 (qKL2-1) and 13.05 (qKL1-1) per cent of the phenotypic variance. Notably, one common QTL, located at the marker interval between bnlg1893 and chr2-236477 (chromosomal bin 2.09) simultaneously controlled GY and HKW; another common QTL, at bin 2.03 was simultaneously responsible for HKW and KW. Of the QTLs identified, only one pair of significant epistatic interaction involved in chromosomal region at bin 2.03 was detected for HKW; no significant QTL × environment interactions were observed. These results provide the common QTLs and for marker-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Austin D. F. and Lee M. 1996 Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor. Appl. Genet. 92, 817–826.

    Article  CAS  PubMed  Google Scholar 

  • Beavis W. D. 1998 QTL analyses: power, precision, and accuracy. In Molecular dissection of complex traits (ed. A. H. Paterson) CRC Press, Boca Raton, USA, pp. 145–162.

  • Beavis W. D., Smith O. S., Grant D. and Fincher R. 1994 Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci. 34, 882–896.

    Article  Google Scholar 

  • Berke T. G. and Rocheford T. R. 1995 Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci. 35, 1542–1549.

    Article  Google Scholar 

  • Cai L. C., Li K., Yang X. H. and Li J. S. 2014 Identification of large-effect QTL for kernel row number has potential for maize yield improvement. Mol. Breed. 34, 1087–1096.

    Article  CAS  Google Scholar 

  • Carlborg Ö and Haley C. S. 2004 Epistasis: too often neglected in complex trait studies? Nat. Rev. Genet. 5, 618–625.

    Article  CAS  PubMed  Google Scholar 

  • Carlson S. J. and Chourey P. S. 1999 A re-evaluation of the relative roles of two invertases, INCW2 and IVR1, in developing maize kernels and other tissues. Plant Physiol. 121, 1025–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M., SanMiguel P., De Oliveira A., Woo S.-S., Zhang H., Wing R. A. et al. 1997 Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc. Natl. Acad. Sci. USA 94, 3431–3435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng W. H., Taliercio E. W. and Chourey P. S. 1996 The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 8, 971–983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choe E. and Rocheford T. R. 2012 Genetic and QTL analysis of pericarp thickness and ear architecture traits of Korean waxy corn germplasm. Euphytica 183, 243–260.

    Article  Google Scholar 

  • Churchill G. A. and Doerge R. W. 1994 Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark J. K. and Sheridan W. F. 1986 Developmental profiles of the maize embryo-lethal mutants dek22 and dek23. J. Hered. 77, 83–92.

    Google Scholar 

  • Coe E. H., Hoisington D. and Chao S. 1990 Gene list and working maps. Maize Genet. Coop. News Lett. 64, 134–163.

    Google Scholar 

  • Collard B. C. and Mackill D. J. 2008 Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. London B. Biol. Sci. 363, 557–572.

    Article  CAS  PubMed  Google Scholar 

  • Darvasi A. and Soller M. 1997 A simple method to calculate resolving power and confidence interval of QTL map location. Behav. Genet. 27, 125–132.

    Article  CAS  PubMed  Google Scholar 

  • Doebley J. 2004 The genetics of maize evolution. Annu. Rev. Genet. 38, 37–59.

    Article  CAS  PubMed  Google Scholar 

  • Doebley J. F., Gaut B. S. and Smith B. D. 2006 The molecular genetics of crop domestication. Cell 127, 1309–1321.

    Article  CAS  PubMed  Google Scholar 

  • Fan C. C., Xing Y. Z., Mao H. L., Lu T. T., Han B., Xu C. G. et al. 2006 GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171.

    Article  CAS  PubMed  Google Scholar 

  • Gallais A. and Hirel B. 2004 An approach to the genetics of nitrogen use efficiency in maize. J. Exp. Bot. 55, 295–306.

    Article  CAS  PubMed  Google Scholar 

  • Hallauer A. R. and Miranda J. B. 1988 Quantitative genetics in maize breeding, 2nd edition. Iowa State University Press, Ames, USA.

  • Karen Sabadin P., Lopes de Souza Júnior C., Pereira de Souza A. and Augusto Franco Garcia A. 2008 QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas 145, 194–203.

    Article  Google Scholar 

  • Knapp S. J., Stroup W. W. and Ross W. M. 1985 Exact confidence intervals for heritability on a progeny mean basis. Crop Sci. 25, 192–194.

    Article  Google Scholar 

  • Li C. H., Li Y. X., Sun B. C., Peng B., Liu C., Liu Z. Z. et al. 2013 Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica 193, 303–316.

    Article  CAS  Google Scholar 

  • Li H. H., Ribaut J. M., Li Z. and Wang J. K. 2008 Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor. Appl. Genet. 116, 243–260.

    Article  PubMed  Google Scholar 

  • Li J. Z., Zhang Z. W., Li Y. L., Wang Q. L. and Zhou Y. G. 2011 QTL consistency and meta-analysis for grain yield components in three generations in maize. Theor. Appl. Genet. 122, 771–782.

    Article  CAS  PubMed  Google Scholar 

  • Li M., Guo X. H., Zhang M., Wang X. P., Zhang G. D., Tian Y. C. et al. 2010a Mapping QTLs for grain yield and yield components under high and low phosphorus treatments in maize (Zea mays L.). Plant Sci. 178, 454–462.

    Article  CAS  Google Scholar 

  • Li M. G., Villemur R., Hussey P. J., Silflow C. D., Gantt J. S. and Snustad D. P. 1993 Differential expression of six glutamine synthetase genes in Zea mays. Plant Mol. Biol. 23, 401–407.

    Article  CAS  PubMed  Google Scholar 

  • Li Q., Li L., Yang X., Warburton M. L., Bai G. H., Dai J. R. et al. 2010b Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol. 10, 143.

  • Li Q., Yang X. H., Bai G. H., Warburton M. L., Mahuku G., Gore M. et al. 2010c Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor. Appl. Genet. 120, 753–763.

    Article  CAS  PubMed  Google Scholar 

  • Li Y. B., Fan C. C., Xing Y. Z., Yun P., Luo L. J., Yan B. et al. 2014 Chalk5 encodes a vacuolar H +-translocating pyrophosphatase influencing grain chalkiness in rice. Nat. Genet. 46, 398–404.

    Article  CAS  PubMed  Google Scholar 

  • Li Y. L., Li X. H., Li J. Z., Fu J. F., Wang Y. Z. and Wei M. G. 2009 Dent corn genetic background influences QTL detection for grain yield and yield components in high-oil maize. Euphytica 169, 273–284.

    Article  Google Scholar 

  • Li Y. L., Niu S. Z., Dong Y. B., Cui D. Q., Wang Y. Z., Liu, Y. Y. et al. 2007 Identification of trait-improving quantitative trait loci for grain yield components from a dent corn inbred line in an advanced backcross BC2 F 2 population and comparison with its F2:3 population in popcorn. Theor. Appl. Genet. 115, 129– 140.

    Article  CAS  PubMed  Google Scholar 

  • Lid S. E., Gruis D., Jung R., Lorentzen J. A., Ananiev E., Chamberlin, M. et al. 2002 The defective kernel 1 (dek1) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proc. Natl. Acad. Sci. USA 99, 5460–5465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lincoln S. E. 1992 Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1. Whitehead Institute Technical Report, 2nd edition. Massachusetts, USA.

  • Liu Y., Wang L. W., Sun C. L., Zhang Z. X., Zheng Y. L. and Qiu F. Z. 2014 Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor. Appl. Genet. 127, 1019–1037.

    Article  CAS  PubMed  Google Scholar 

  • Lu G. H., Tang J. H., Yan J. B., Ma X. Q., Li J. S., Chen S. J. et al. 2006 Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time. J. Integr. Plant Biol. 48, 1233–1243.

    Article  CAS  Google Scholar 

  • Maitz M., Santandrea G., Zhang Z. Y., Lal S., Hannah L. C., Salamini F. et al. 2000 rgf1, a mutation reducing grain filling in maize through effects on basal endosperm and pedicel development. Plant J. 23, 29–42.

    Article  CAS  PubMed  Google Scholar 

  • Mao H. L., Sun S. Y., Yao J. L., Wang C. R., Yu S. B., Xu C. G. et al. 2010 Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc. Natl. Acad. Sci. USA 107, 19579–19584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin A., Lee J., Kichey T., Gerentes D., Zivy M., Tatout C. et al. 2006 Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 18, 3252–3274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melchinger A. E., Utz H. F. and Schön C. C. 1998 Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149, 383–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messmer R., Fracheboud Y., Bänziger M., Vargas M., Stamp P. and Ribaut J. M. 2009 Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor. Appl. Genet. 119, 913–930.

    Article  PubMed  Google Scholar 

  • Peng B., Li Y. X., Wang Y., Liu C., Liu Z. Z., Tan W. W. et al. 2011 QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor. Appl. Genet. 122, 1305–1320.

    Article  PubMed  Google Scholar 

  • Phillips P. C. 2008 Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 9, 855–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Z. M., Wu Q., Han X., Sun Y. N., Du X. Y., Liu C. Y. et al. 2011 Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes. Euphytica 179, 499– 514.

    Article  Google Scholar 

  • Ribaut J. M., Jiang C., Gonzalez-de-Leon D., Edmeades G. and Hoisington D. 1997 Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor. Appl. Genet. 94, 887–896.

    Article  Google Scholar 

  • Sa K. J., Park J. Y., Woo S. Y., Ramekar R. V., Jang C. S. and Lee J. K. 2015 Mapping of QTL traits in corn using a RIL population derived from a cross of dent corn × waxy corn. Genes Genomics 37, 1–14.

    Article  Google Scholar 

  • Saghai-Maroof M., Soliman K., Jorgensen R. A. and Allard R. 1984 Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81, 8014–8018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos F. R., Pena S. D. and Epplen J. T. 1993 Genetic and population study of a Y-linked tetranucleotide repeat DNA polymorphism with a simple non-isotopic technique. Hum. Genet. 90, 655–656.

    Article  CAS  PubMed  Google Scholar 

  • Sheridan W. F. 1988 Maize developmental genetics: genes of morphogenesis. Annu. Rev. Genet. 22, 353–385.

    Article  CAS  PubMed  Google Scholar 

  • Tan Y. F., Xing Y. Z., Li J. X., Yu S. B., Xu C. G. and Zhang Q. F. 2000 Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor. Appl. Genet. 101, 823–829.

    Article  CAS  Google Scholar 

  • Tang J. H., Yan J. B., Ma X. Q., Teng W. T., Wu W. R., Dai J. R. et al. 2010 Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor. Appl. Genet. 120, 333–340.

    Article  PubMed  Google Scholar 

  • Tian M. L., Tan G. X., Liu Y. J., Rong T. Z. and Huang Y. B. 2009 Origin and evolution of Chinese waxy maize: evidence from the globulin-1 gene. Genet. Resour. Crop. Evol. 56, 247–255.

    Article  CAS  Google Scholar 

  • Veldboom L. R. and Lee M. 1994 Molecular-marker-facilitated studies of morphological traits in maize. II: Determination of QTLs for grain yield and yield components. Theor. Appl. Genet. 89, 451–458.

    Article  CAS  PubMed  Google Scholar 

  • Veldboom L. R. and Lee M. 1996 Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I. Grain yield and yield components. Crop Sci. 36, 1310–1319.

    Article  CAS  Google Scholar 

  • Wilson L. M., Whitt S. R., Ibáñez A. M., Rocheford T. R., Goodman M. M. and Buckler E. S. 2004 Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16, 2719–2733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J. B., Tang H., Huang Y. Q., Zheng Y. L. and Li J. S. 2006 Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica 149, 121–131.

    Article  CAS  Google Scholar 

  • Yang C., Tang D. G., Zhang L., Liu J. and Rong T. Z. 2015 Identification of QTL for ear row number and two-ranked versus many-ranked ear in maize across four environments. Euphytica 206, 33–47.

    Article  Google Scholar 

  • Yang J., Zhu J. and Williams R. W. 2007 Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23, 1527–1536.

    Article  CAS  PubMed  Google Scholar 

  • Zhang G. D., Wang X. P., Wang B., Tian Y. C., Li M., Nie Y. X. et al. 2013 Fine mapping a major QTL for kernel number per row under different phosphorus regimes in maize (Zea mays L.). Theor. Appl. Genet. 126, 1545–1553.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z. H., Liu Z. H., Hu Y. M., Li W. H., Fu Z. Y., Ding D. et al. 2014 QTL analysis of kernel-related traits in maize using an immortalized F2 population. PLoS One 9, e89645.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We greatly appreciate Prof Yuanqi Wu, Zhiming Zhang and Yaou Shen for suggestions and revisions to this manuscript. This research was supported by the National Basic Research Programme of China (the ‘973’ project, 2014CB138203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TINGZHAO RONG.

Additional information

[Yang C., Zhang L., Jia A. and Rong T. 2016 Identification of QTL for maize grain yield and kernel-related traits. J. Genet. 95, xx–xx]

TR designed and supervised the study, CY, LZ and AJ performed the experiments. CY analysed the data and prepared the manuscript. The manuscript has been read and approved by all authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

YANG, C., ZHANG, L., JIA, A. et al. Identification of QTL for maize grain yield and kernel-related traits. J Genet 95, 239–247 (2016). https://doi.org/10.1007/s12041-016-0628-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-016-0628-z

Keywords

Navigation