Skip to main content
Log in

Quantitative trait loci analysis of individual and total isoflavone contents in soybean seeds

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Soybean isoflavones play diverse roles in human health, including cancers, osteoporosis, heart disease, menopausal symptoms and pabulums. The objective of this study was to identify the quantitative trait loci (QTL) associated with the isoflavones daidzein (DC), genistein (GeC), glycitein (GlC) and total isoflavone contents (TIC) in soybean seeds. A population of 184 F21:0 recombinant inbred lines derived from a ‘Xiaoheidou’ בGR8836’ cross was planted in pot and field conditions to evaluate soybean isoflavones. Twenty-one QTL were detected by composite interval mapping. Several QTL were associated with the traits for DC, GeC, GlC and TIC only. QDGeGlTIC4_1 and QDGlTIC12_1 are reported first in this study and were associated with the DC, GeC, GlC and TIC traits simultaneously. The QTL identified have potential value for marker-assisted selection to develop soybean varieties with desirable isoflavone content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Aedin C., Bryn H. and Rosa M. 2000 Isoflavones, lignans and stilbenes – origins, metabolism and potential importance to human health. J. Sci. Food. Agric. 80, 1044–1062.

  • Akashi T., Aoki T. and Ayabe S. 1999 Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involed in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol. 121, 821–828.

  • Bennett J. O., Yu O., Heatherly L. G. and Krishnan B. 2004 Accumulation of genistein and daidzein, soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation. J. Agric. Food Chem. 52, 7574–7579.

  • Brummer E. C., Graef G. L., Orf J., Wilcox J. R. and Shoemaker R. C. 1997 Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci. 37, 304–310.

  • Caldwell C. R., Britz S. J. and Mirecki R. M. 2005 Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean (Glycine max (L.) Merrill) grown in controlled environments. J. Agric. Food Chem. 53, 1125–1129.

  • Cardinal A. J., Burton J. W., Camacho-Roger A. M., Yang J. H., Wilson R. F. and Dewey R. E. 2007 Molecular analysis of soybean lines with low palmitic acid content in the seed oil. Crop Sci. 47, 304–310.

  • Cheng H., Yu O. and Yu D. Y. 2008 Polymorphisms of IFS1 and IFS2 gene are associated with isoflavone concentrations in soybean seeds. Plant Sci. 175, 505–512.

  • Gutierrez-Gonzalez J. J., Wu X., Zhang J., Lee J. D., Ellersieck M., Shannon J. G., Yu O., Nguyen H. T. and Sleper D. A. 2009 Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits. Theor. Appl. Genet. 119, 1069–1083.

  • Haldane J. B. S. 1919 The combination of linkage values and the calculation of distances between the loci of linked factors. J. Genet. 8, 299–309.

  • Hoeck J. A., Fehr W. R., Murphy P. A. and Welke G. A. 2000 Influence of genotype and environment on isoflavone contents of soybean. Crop Sci. 40, 48–51.

  • Jung W., Yu O., Lau S. M., O’Keefe D. P., Odell J., Fader G. and McGonigle B. 2000 Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat. Biotwchnol. 18, 208–212.

  • Kassem M. A., Meksem K., Iqbal M. J., Njiti V. N., Banz W. J., Winters T. A., et al. 2004 Definition of soybean genomic regions that control seed phytoestrogen amounts. J. Biomed. Biotechnol. 1, 52–60.

  • Kassem M. A., Shultz J., Meksem K., Cho Y., Wood A., Iqbal M. J. and Lightfood D. A. 2006 An updated ‘Essex’ by ‘Forrest’ linkage map and first composite interval map of QTL underlying six soybean traits. Theor. Appl. Genet. 113, 1015–1026.

  • Kosambi D. D. 1944 The estimation of map distances from recombination values. Ann. Eugen 12, 172–175.

  • Kudou S., Fleury Y., Welti D., Magnolato D., Uchida T., Keisuke K. and Okubo K. 1991 Malonyl isoflavone glycosides in soybean seeds (Glycinem max. Merrill.) Agric. Biol. Chem. 55, 2227–2233.

  • Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E. and Newburg L. 1987 Mapmaker: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.

  • Latunde-Dada A. O., Cabello-Hurtado F., Czittrich N., Didierjean L., Schopfer C., Hertkorn N. et al. 2001 Flavonoid 6-hydroxylase from soybean (Glycine max L.), a novel plant P-450 monooxygenase. Biol. Chem. 276, 1688–1695.

  • Lee S. J., Yan W., Ahn J. K. and Chung I. M. 2003 Effects of year, site, genotype and their interactions on various soybean isoflavones. Field Crops Res. 81, 181–192.

  • Liang H., Wang S., Yu Y., Lian Y., Wang T., Wei Y., Gong P., Liu X. and Fang X. 2009 QTL mapping of isoflavone, oil and protein content in soybean. Sci. Agric. Sin 42, 2652–2660.

  • Lin S., Cianzio S. R. and Shoemaker R. C. 1997 Mapping genetic loci for iron deficiency chlorosis in soybean. Mol. Breed. 3, 219–229.

  • Lo F. H., Mak N. K. and Leung K. N. 2007 Studies on the anti-tumor activities of the soy isoflavone daidzein on murine neuroblastoma cells. Biomed. Pharmaeother. 61, 591–595.

  • Lozovaya V. V., Lygin A.V., Ulanov A. V., Nelson R. L., Dayde J. and Widholm J. M. 2005 Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Sci 45, 1934–1940.

  • Matsumura H., Watanabe S., Harada K., Senda M., Akada S., Kawasaki S. et al. 2005 Molecular linkage mapping and phylogeny of the chalcone synthase multigene family in soybean. Theor. Appl. Genet. 110, 1203–1209.

  • Meksem K., Njiti V. N., Banz W. J., Iqbal M. J., Kassem M. M., Hyten D. L., Yuang J., Winters T. A. and Lightfood D. A. 2001 Genomic regions that underlie soybean seed isoflavone content. J. Biomed. Biotechnol. 1, 38–44.

  • Meng F., Han Y., TengW., Li Y. and LiW. 2011 QTL underlying the resistance to soybean aphid (Aphis glycines Matsumura) through isoflavone-mediated antibiosis in soybean cultivar ‘Zhongdou isoflavone-mediated antibiosis in soybean cultivar ‘Zhongdou. Theor. Appl. Genet 123, 1459–1465.

  • Murphy S. E., Lee E. A., Woodrow L., Seguin P., Kumar J., Rajcan I. and Ablett G. R. 2009 Genotype × environment interaction and stability for isoflavone content in soybean. Crop Sci. 49, 1313–1321.

  • Naim M., Gestetner B., Bondi A. and Birk Y. 1976 Antioxidative and antihemolytic activity of soybean isoflavone. J. Agric. Food Chem. 22, 806–811.

  • Njiti V., Meksem K., Lightfood D. A., Banz W. J. and Winters T. A. 1999 Molecular markers of phytoestrogen content in soybeans. J. Med. Food 2, 165–167.

  • Primomo V. S., Poysa V., Ablett G. R., Jackson C. J., Gijzen M. and Rajcan I. 2005 Mapping QTL for individual and total isoflavone content in soybean seeds. Crop Sci. 45, 2454–2464.

  • Qi Z., Wu Q., Han X., Sun Y., Du X., Liu C., Jiang H., Guo H. and Chen Q. 2011 Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes. Euphytica 179, 499–514.

  • Sangeeta D., Mark G., Pat M. and Mana F. 2007 Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds. Plant Physiol. 143, 326–338.

  • Song Q. J., Marek L. F., Shoemaker R. C., Lark K. G., Concibido V. C., Delannay X. et al. 2004 A new integrated genetic linkage map of the soybean. Theor. Appl. Genet. 109, 122–128.

  • Song X., Han Y., Teng W., Sun G. and Li W. 2010 Identification of QTL underlying somatic embryogenesis capacity of immature embryos in soybean (Glycine max (L.) Merr.) Plant Cell Rep. 29, 125–131.

  • Stracke R., Werber M. and Weisshaar B. 2001 The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 4, 447–456.

  • Tikkanen M. J. and Adlerereutz H. 2000 Dietary soy-derived isoflavone phytoestrogens: Could they have a role in coronary heart disease prevention? Biochem. Pharmacol. 60, l–5.

  • Trigizano R. N. and Caetano-Anolles G. 1998 Laboratory exercises on DNA amplification fingerprinting for evaluating the molecular diversity of horticultural species. Hort. Technol. 8, 413–423.

  • Tsukamoto C., Shimada S., Igita K., Kudou S., Kokubun M., Okubo K. and Kitamura K. 1995 Factors affecting isoflavone content in soybean seeds: Changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J. Agric. Food Chem. 43, 1184–1192.

  • Wang C., Sherrard M., Pagadala S., Wixon R. and Scott R. A. 2000 Isoflavone content among maturity group 0 to II soybeans. J. Am. Oil Chem. Soc. 77, 483–487.

  • Wang H. and Murphy P. 1994 Isoflavone composition of American and Japanese soybeans in lowa: Efferents of variety, crop year, and location. J. Agric. Food Chem. 42, 1674–1677.

  • Watanabe S., Uesugi S. and Kikuchi Y. 2002 Isoflavones for prevention of cancer, cardiovascular diseases, gynecological problems and possible immune potentiation. Biomed Pharmacother 56, 302–312.

  • Weidenborner M., Hindorf H., Jha H. C., Tsotsonos P. and Egge H. 1990 Antifungal activity of isoflavones in different reduced stages on Rhizoctonia solani and Sclerotium rolfsii. Phytochemistry 29, 801–803.

  • Yang K., Moon J. K., Jeong N., Back K., Kim H. M. and Jeong S. C. 2008 Genome structure in soybean revealed by a genomewide genetic map constructed from a single population. Genomics 9, 52–59.

  • Yang K., Moon J. K., Jeong N., Chun H. K., Kang S. T., Back K. and Jeong S. C. 2011 Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds. Genes Genomics 33, 685–692.

  • Yu O., Shi J., Hession A. O., Maxwell C. A., Mcgonigle B. and Odell C. A. 2003 Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63, 753–763.

  • Yuan J., Njiti V. N., Meksem K., Iqbal M. J., Triwitayakorn K., Kassem M. A. et al. 2002 Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci. 42, 271–277.

  • Zeng G., Li D., Han Y., Teng W., Wang J., Qiu L. and Li W. 2009 Identification of QTL underlying isoflavone contents in soybean seeds among multiple environments. Theor. Appl. Genet. 118, 1455–1463.

  • Zeng Z. B. 1993 Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc. Natl. Acad. Sci. USA 90, 10972–10976.

  • Zeng Z. B. 1994 Precision mapping of quantitative trait loci. Genetics 136, 1457–1468.

  • Zhang D., Cheng H., Wang H., Zhang H. Y., Liu C. Y. and Yu D. Y. 2010 Identification of genomic regions determining flower and pod numbers development in soybean (Glycine max L.) J. Genet. Genomics 37, 545–556.

  • Zhang J., Ge Y., Sun J., Han F., Yu F., Yan S. and Yang H. 2012 Identification of QTL for isoflavone components among multiple environment in soybean seeds. Sci. Agric. Sin 45, 3909–3920.

Download references

Acknowledgements

The financial support for this research was provided by the National Natural Science Foundation of China (no. 31000717), Specialized Research Fund for the Doctoral Programme of Higher Education (20090061120002), the Fundamental Research Funds for the Central Universities, and the 211 Project of Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to QING YU WANG or YING WANG.

Additional information

[Zhang H. J., Li J.W., Liu Y. J., Jiang W. Z., Du X. L., Li L., Li X.W., Su L. T.,Wang Q. Y. and Wang Y. 2014 Quantitative trait loci analysis of individual and total isoflavone contents in soybean seeds. J. Genet. 93, xx–xx]

Hai Jun Zhang and Jing Wen Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ZHANG, H.J., LI, J.W., LIU, Y.J. et al. Quantitative trait loci analysis of individual and total isoflavone contents in soybean seeds. J Genet 93, 331–338 (2014). https://doi.org/10.1007/s12041-014-0371-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-014-0371-2

Keywords

Navigation