Skip to main content
Log in

Genetic controls on starch amylose content in wheat and rice grains

  • REVIEW ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Starch accumulates in plants as granules in chloroplasts of source organs such as leaves (transitory starch) or in amyloplasts of sink organs such as seeds, tubers and roots (storage starch). Starch is composed of two types of glucose polymers: the essentially linear polymer amylose and highly branched amylopectin. The amylose content of wheat and rice seeds is an important quality trait, affecting the nutritional and sensory quality of two of the world’s most important crops. In this review, we focus on the relationship between amylose biosynthesis and the structure, physical behaviour and functionality of wheat and rice grains. We briefly describe the structure and composition of starch and then in more detail describe what is known about the mechanism of amylose synthesis and how the amount of amylose in starch might be controlled. This more specifically includes analysis of GBSS alleles, the relationship between waxy allelic forms and amylose, and related quantitative trait loci. Finally, different methods for increasing or lowering amylose content are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ainsworth C. C., Gale M. D. and Baird S. 1983 The genetics of β-amylase isozymes in wheat. Theor. Appl. Genet. 66, 39–49.

    CAS  PubMed  Google Scholar 

  • Ainsworth C., Hosein F., Tarvis M., Weir F., Burrell M., Devos K. M. et al. 1995 Adenosine diphosphate glucose pyrophosphorylase genes in wheat: differential expression and gene mapping. Planta 197, 1–10.

    PubMed  Google Scholar 

  • Aluko G.,Martinez C., Tohme J., Castano C., Bergman C. and Oard J. H. 2004 QTL mapping of grain quality traits from the interspecific cross Oryza sativa × O. glaberrima. Theor. Appl. Genet. 109, 630–639. 565

    CAS  PubMed  Google Scholar 

  • Araki E., Miura H. and Sawada S. 1999 Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor. Appl. Genet. 98, 977–984.

    CAS  Google Scholar 

  • Araki E., Miura H. and Sawada S. 2000 Differential effects of the null alleles at the three Wx loci on the starch-pasting properties of wheat. Theor. Appl. Genet. 100, 1113–1120.

    CAS  Google Scholar 

  • Ayres N. M., McClung A. M., Larkin P. D., Bligh H. F. J., Jones C. A. and Park W. D. 1997 Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germ plasm. Theor. Appl. Genet. 94, 773–781.

    CAS  Google Scholar 

  • Ball S. G. and Morell M. K. 2003 From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu. Rev. Plant Biol. 54, 207–233. 579

    CAS  PubMed  Google Scholar 

  • Ball S. G., van de Wal M. H. B. J. and Visser R. G. F. 1998 Progress in understanding the biosynthesis of amylose. Trends Plant Sci. 3, 462–467.

    Google Scholar 

  • Bao J. S., Corke H. and Sun M. 2002 Microsatellites in starchsynthesizing genes in relation to starch physicochemical properties in waxy rice (Oryza sativa L.) Theor. Appl. Genet. 105, 898–905.

    CAS  PubMed  Google Scholar 

  • Bechtel D. B., Zayas I., Kaleikau L. and Pomeranz Y. 1990 Size-distribution of wheat starch granules during endosperm development. Cereal Chem. 67, 59–63.

    Google Scholar 

  • Bhattacharya K. R. 2004 Parboiling of rice. In Rice chemistry and technology (ed. E. T. Champagne), 3rd edition, pp. 367–384. American Association of Cereal Chemists International, St Paul, USA.

    Google Scholar 

  • Bligh H. F. J., Larkin P. D., Roach P. S., Jones C. A., Fu H. and Park W. D. 1998 Use of alternate splice sites in granule-bound starch synthase mRNA from low-amylose rice varieties. Plant Mol. Biol. 38, 407–415.

    CAS  PubMed  Google Scholar 

  • Boyer C. D. and Hannah L. C. 1994 Kernel mutants of corn. In Specialty corns (ed. A. R. Hallauer), pp. 2–28. CRC Press, Boca Raton, USA.

    Google Scholar 

  • Brar D. S. and Khush G. S. 2002 Transferring genes from wild species into rice. In Quantitative genetics, genomics and plant breeding (ed. M. S. Kang). pp. 197–217. CAB International, Wallingford, UK.

    Google Scholar 

  • Buléon A., Colonna P., Planchot V. and Ball S. 1998 Starch granules: structure and biosynthesis. Int. J. Biol. Macromol. 23, 85–112.

    PubMed  Google Scholar 

  • Butardo V. M., Fitzgerald M. A., Bird A. R., Gidley M. J., Flanagan B. M., Larroque O. et al. 2011 Impact of downregulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing. J. Exp. Bot. 62, 4927–4941.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Butardo Jr V. M., Daygon V. D., Colgrave M. L., Campbell P. M., Resurreccion A., Cuevas R. P. et al. 2012 Biomolecular analyses of starch and starch granule proteins in the high-amylose rice mutant goami 2. J. Agric. Food Chem. 60, 11576–11585.

    Google Scholar 

  • Cai X. L., Wang Z. Y., Xing Y. Y., Zhang J. L. and Hong M. M. 1998 Aberrant splicing of intron 1 leads to the heterogeneous 5’UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant J. 14, 459–465.

    CAS  PubMed  Google Scholar 

  • Cai X., Wang Z. and Xing Y. 2000 Alteration of RNA secondary structure of rice waxy intron 1 caused by naturally occurred mutations. Acta Phytophysiol. Sin. 26, 59–63.

    CAS  Google Scholar 

  • Chanda S. V. and Singh Y. D. 1998 Cell enlargement as an important factor in controlling grain weight in wheat. J. Agron. Crop Sci. 181, 223–228.

    Google Scholar 

  • Chao S., Sharp P. J., Worland A. J., Warham E. J., Koebner R. M. D. and Gale M. D. 1989 RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor. Appl. Genet. 78, 495–504.

    CAS  PubMed  Google Scholar 

  • De FeketeM. A. R., Leloir L. F. and Cardini C. E. 1960 Mechanism of starch biosynthesis. Nature 187, 918–919.

    CAS  Google Scholar 

  • Dengate H. and Meredith P. 1984 Variation in size distribution of starch granules from wheat grain. J. Cereal Sci. 2, 83–90.

    Google Scholar 

  • Denyer K., Johnson P., Zeeman S. and Smith A. M. 2001 The control of amylose synthesis. J. Plant Physiol. 158, 479–487.

    CAS  Google Scholar 

  • Dobo M., Ayres N., Walker G. and Park W. D. 2010 Polymorphism in the GBSS gene affects amylose content in US and European rice germplasm. J. Cereal Sci. 52, 450–456.

    CAS  Google Scholar 

  • Drea S., Leader D. J., Arnold B. C., Shaw P., Dolan L. and Doonan J. H. 2005 Systematic spatial analysis of gene expression during wheat caryopsis development. Plant Cell 17, 2172–2185.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dvorak J., Luo M. C., Yang Z. L. and Zhang H. B. 1998 The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 97, 657–670.

    CAS  Google Scholar 

  • Echt S. and Schwartz D 1981 Evidence for the inclusion of controlling elements within the structural gene at the waxy locus in maize. Genetics 99, 275–284.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eliasson A. C. and Karlsson R 1983 Gelatinization properties of different size classes of wheat starch granules measured with differential scanning calorimeter. Starch-Stärke 35, 130–133.

    CAS  Google Scholar 

  • Evers A. D. and Lindley J. 1977 The particle-size distribution in wheat endosperm starch. J. Sci. Food Agric. 28, 98–101.

    Google Scholar 

  • Fan C. C., Yu X. Q., Xing Y. Z., Xu C. G., Luo L. J. and Zhang Q. F. 2005 The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled haploid line population. Theor. Appl. Genet. 110, 1445–1452.

    CAS  PubMed  Google Scholar 

  • Fasahat P., Muhammad K., Abdullah A. and Wickneswari R. 2012a Proximate composition and antioxidant properties of Malaysian wild rice – Oryza rufipogon. Aust. J. Crop Sci. 6, 1502–1507.

    Google Scholar 

  • Fasahat P.,Muhammad K., Abdullah A. and Wickneswari R. 2012b Identification of introgressed alien chromosome segments associated with grain quality in Oryza rufipogon × MR219 advanced breeding lines using SSR markers. Genet. Mol. Res. 11, 3534–3546.

    CAS  PubMed  Google Scholar 

  • FeldmanM., Lupton F. G. H. and Miller T. E. 1995 Wheats Triticum spp (Gramineae–Triticinae). In Evolution of crop plants (ed. J. Smartt and N. W. Simmonds). pp. 184–192. Longman Scientific and Technical, London, England.

    Google Scholar 

  • Fitzgerald M. A., Bergman C. J., Ressurreccion A. P., Moller J., Jimenez R., Reinke R. F. et al. 2009 Addressing the dilemmas of measuring amylose in rice. Cereal Chem. 86, 492–498.

    CAS  Google Scholar 

  • Fitzgerald M. A., Rahman S., Resurreccion A. P., Concepcion J., Daygon V. D., Dipti S. S. et al. 2011 Identification of a major genetic determinant of glycaemic index in rice. Rice 4, 66–74.

    Google Scholar 

  • Fujita N., Satoh R., Hayashi A., KodamaM., Itoh R., Aihara S. et al. 2011 Starch biosynthesis in rice endosperm requires the presence of either starch synthase I or IIIa. J. Exp. Bot. 62, 4819–4831.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gealy D. R. and Bryant R. J. 2009 Seed physicochemical characteristics of field-grown US weedy red rice (Oryza sativa) biotypes: Contrasts with commercial cultivars. J. Cereal Sci. 49, 239–245.

    CAS  Google Scholar 

  • Gérard C., Colonna P., Buléon A. and Planchot V. 2002 Order in maize mutant starches revealed by mild acid hydrolysis. Carbohydr. Polym. 48, 131–141.

    Google Scholar 

  • Gumul D., Gambu´s H., Ziobro R. and Pikus S. 2008 Changes in molecular mass and crystalline structure of starch isolated from immature cereals. Polish J. Food Nutr. Sci. 58, 463–469.

    CAS  Google Scholar 

  • Guo Y., Mu P., Liu J., Lu Y. and Li Z. 2007 QTL mapping and Q × E interactions of grain cooking and nutrient qualities in rice under upland and lowland environments. J. Genet. Genomics. 34, 420–428.

    PubMed  Google Scholar 

  • Hallstrom E., Sestili F., Lafiandra D., Bjorck I. and Ostman E. 2011 A novel wheat variety with elevated content of amylose increases resistant starch formation and may beneficially influence glycaemia in healthy subjects. Food Nutr. Res. 55, 7074.

    Google Scholar 

  • Han Y., Xu M., Liu X., Yan C., Korban S. S., Chen X. et al. 2004 Genes coding for starch branching enzymes are major contributors to starch viscosity characteristics in waxy rice (Oryza sativa L.) Plant Sci. 166, 357–364.

    CAS  Google Scholar 

  • He P., Li S. G., Qian Q., Ma Y. Q., Li J. Z., Wang W. M. et al. 1999 Genetic analysis of rice grain quality. Theor. Appl. Genet. 98, 502–508.

    CAS  Google Scholar 

  • Hennen-Bierwagen T. A., Liu F., Marsh R. S., Kim S., Gan Q., Tetlow, I. J. et al. 2008 Starch biosynthetic enzymes from developing maize endosperm associate in multisubunit complexes. Plant Physiol. 146, 1892–1908.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Higgins J. A. 2004 Resistant starch: metabolic effects and potential health benefits. J. AOAC Int. 87, 761–768.

    CAS  PubMed  Google Scholar 

  • Hoseney R. C. 1994 Starch: Gelling and retrogradation. In Principles of cereal science and technology, 2nd edition, pp. 48–52. American Association of Cereal Chemists International, St Paul, USA.

    Google Scholar 

  • Hoseney R. C. 2002 Principles of cereal science and technology. American Association of Cereal Chemists, St Paul, USA.

    Google Scholar 

  • Huang F., Sun Z., Hu P. and Tang S. 1998 Present situations and prospects for the research on rice grain quality forming. Chin. J. Rice Sci. 12, 172–176.

    Google Scholar 

  • Isshiki M., Morino K., Nakajima M., Okagaki R. J., Wessler S. R., Izawa T. et al. 1998 A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 50 splice site of the first intron. Plant J. 15, 133–138.

    CAS  PubMed  Google Scholar 

  • Itoh K., Ozaki H., Okada K., Hori H., Takeda Y. and Mitsui T. 2003 Introduction of Wx transgene into rice wx mutants leads to both high- and low-amylose rice. Plant Cell Physiol. 44, 473–480.

    CAS  PubMed  Google Scholar 

  • Jenkins P. J. and Donald A. M. 1997 The effect of acid hydrolysis on native starch granule structure. Starch-Stärke 49, 262–267.

    CAS  Google Scholar 

  • Jeon J. S., Ryoo N., Hahn T. R., Walia H. and Nakamura Y. 2010 Starch biosynthesis in cereal endosperm. Plant Physiol. Biochem. 48, 383–392.

    CAS  PubMed  Google Scholar 

  • Jimenez R. R., Resurrection A. P. and Fitzgerald M. A. 2010 Moving from apparent to actual amylose in rice. In OP10: quality grain, health, and nutrition. 28th International Rice Research Conference, Hanoi, Vietnam.

  • Jiranuntakul W., Puttanlek C., Rungsardthong V., Puncha-arnon S. and Uttapap D. 2011 Microstructural physicochemical properties of heat-moisture treated waxy and normal starches. J. Food Eng. 104, 246–258.

    CAS  Google Scholar 

  • Juliano B. O. 1971 A simplified assay for milled-rice amylose. Cereal Sci. Today 16, 334–338.

    Google Scholar 

  • Juliano B. O. 1979 The chemical basis of rice grain quality. In Chemical aspects of rice grain quality, pp. 69–84. IRRI, Los Banos, Philippines.

    Google Scholar 

  • Juliano B. O. 1985 Criteria and test for rice grain quality. In Rice chemistry and technology (ed. B. O. Juliano), pp. 443–513. American Association of Cereal Chemists International, St Paul, USA.

    Google Scholar 

  • Kammerer B., Fischer K., Hilpert B., Schubert S., Gutensohn M., Weber A. et al. 1998 Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter. Plant Cell 10, 105–117.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karupaiah T., Aik C. K., Heen T. C., Subramaniam S., Bhuiyan A. R., Fasahat P. et al. 2011 A transgressive brown rice mediates favourable glycaemic and insulin responses. J. Sci. Food Agric. 91, 1951–1956.

    CAS  PubMed  Google Scholar 

  • Kaur L., Singh J. and Liu Q. 2007 Starch – a potential biomaterial for biomedical applications. In Nanomaterials and nanosystems for biomedical applications (ed. M. R. Mozafari), pp. 83–98. Springer, Netherlands.

    Google Scholar 

  • Kubo A., Rahman S., Utsumi Y., Li Z., Mukai Y., Yamamoto M. et al. 2005 Complementation of sugary-1 phenotype in rice endosperm with the wheat isoamylase1 gene supports a direct role for isoamylase1 in amylopectin biosynthesis. Plant Physiol. 137, 43–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lafiandra D., Sestili F., D’Ovidio R., Janni M., Botticella E., Ferrazzano G. et al. 2010 Approaches for modificationof starch composition in durum wheat. Cereal Chem. 87, 28–34.

    CAS  Google Scholar 

  • Larkin P. D. and Park W. D. 1999 Transcript accumulation and utilization of alternate and non-consensus splice sites in rice granule bound starch synthase are temperature-sensitive and controlled by a single-nucleotide polymorphism. Plant Mol. Biol. 40, 719–727.

    CAS  PubMed  Google Scholar 

  • Larkin P. D. and Park W. D. 2003 Association of waxy gene single nucleotide polymorphisms with starch characteristics in rice (Oryza sativa L.) Mol. Breed. 12, 335–339.

    CAS  Google Scholar 

  • Li J., Xiao J., Grandillo S., Jiang L., Wan Y., Deng Q. et al. 2004 QTL detection for rice grain quality traits using an interspecific backcross population derived fromcultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome 47, 697–704.

    CAS  PubMed  Google Scholar 

  • Li J., Zhang W., Wu H., Guo T., Liu X., Wan X. et al. 2011 Fine mapping of stable QTLs related to eating quality in rice (Oryza sativa L.) by CSSLs harboring small target chromosomal segments. Breed. Sci. 61, 338–346.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Q. 2005 Understanding starches and their role in foods. In Food carbohydrates: Chemistry, physical properties and applications (ed. S. W. Cui), pp. 309–355. CRC Press, Boca Raton, USA.

    Google Scholar 

  • Lou J., Chen L., Yue G. Y., Lou Q., Mei H. and Xiong L. 2009 QTL mapping of grain quality traits in rice. J. Cereal Sci. 50, 145–151.

    CAS  Google Scholar 

  • Lyon B. G., Champagne E. T., Vinyard B. T., Windham W. R., Barton II F. E., Webb B. D. et al. 1999 Effects of degree of milling, drying condition, and final moisture content on sensory texture of cooked rice. Cereal Chem. 76, 56–62.

    CAS  Google Scholar 

  • Mahmood T., Turner M. A. and Stoddard F. L. 2007 Comparison of methods for colorimetric amylose determination in cereal grains. Starch-Stärke 59, 357–365.

    CAS  Google Scholar 

  • Makino A 2011 Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol. 155, 125–129.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manners D. J. 1989 Recent developments in our understanding of amylopectin structure. Carbohydr. Polym. 11, 87–112. Marshall J., Sidebottom C., Debet M., Martin C., Smith A. M. and

    CAS  Google Scholar 

  • Marshall J., Sidebottom C., Debet M., Martin C., Smith A. M. and Edwards A 1996 Identification of the major starch synthase in the soluble fraction of potato tubers. Plant Cell 8, 1121–1135.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin C. and Smith A. M 1995 Starch biosynthesis. Plant Cell 7, 971–985.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCouch S. R. and Doerge R.W 1995 QTL mapping in rice. Trends Genet 11, 482–487.

    CAS  PubMed  Google Scholar 

  • McKenzie K. S. and Rutger J. N. 1983 Genetic analysis of amylose content, alkali spreading and grain dimension in rice. Crop Sci. 23, 306–313.

    CAS  Google Scholar 

  • Meredith P. 1981 Large and small starch granules in wheat–are they really different? Starch-Stärke 33, 40–44.

    CAS  Google Scholar 

  • Mikami L., Dung L. V., Hirano H. Y. and Sano Y 2000 Effects of the two most common Wx alleles on different genetic background in rice. Plant Breed 119, 505–508.

    CAS  Google Scholar 

  • Miura H. and Sugawara A. 1996 Dosage effects of the three Wx genes on amylose synthesis in wheat endosperm. Theor. Appl. Genet. 93, 1066–1070.

    CAS  PubMed  Google Scholar 

  • Miura H., Tanii S., Nakamura T. and Watanabe N. 1994 Genetic control of amylose content in wheat endosperm starch and differential effects of three Wx genes. Theor. Appl. Genet. 89, 276–280.

    CAS  PubMed  Google Scholar 

  • Morell M. K., Regina A., Li Z., Hashemi B. K. and Rahman S. 2003 Advances in the understanding of starch synthesis in wheat and barley. J. Appl. Glycosci. 50, 217–224.

    CAS  Google Scholar 

  • Morell M. K., Li Z., Regina A., Rahman S., D’Hulst C. and Ball S. G. 2007 Control of starch biosynthesis in vascular plants and algae. In Annual plant reviews, control of primary metabolism in plants (ed. W. C. Plaxton and M. T. McManus), pp. 258–289. Blackwell Publishing, Oxford, UK.

    Google Scholar 

  • Mukerjea R. and Robyt J. F. 2010 Isolation, structure, and characterization of the putative soluble amyloses from potato, wheat, and rice starches. Carbohydr. Res. 345, 449–451.

    CAS  PubMed  Google Scholar 

  • Nakamura Y. 2002 Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol. 43, 718–725.

    CAS  PubMed  Google Scholar 

  • Nakamura T., Yamamori M., Hirano H., Hidaka S. and Nagamine T. 1995 Production of waxy (amylose-free) wheats. Mol. Gen. Genet. 248, 253–259.

    CAS  PubMed  Google Scholar 

  • Nakamura T., Vrinten P., Hayakawa K. and Ikeda J. 1998 Characterization of a granule bound starch synthase isoform found in the pericarp of wheat. Plant Physiol. 118, 451–459.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura T., Shimbata T., Vrinten P., Saito M., Yonemaru J., Seto Y. et al. 2006 Sweet wheat. Genes Genet. Syst. 81, 361–365.

    CAS  PubMed  Google Scholar 

  • Nelson O. E. and Rines H.W. 1962 The enzymatic deficiency in the waxy mutant of maize. Biochem. Bioph. Res. Commun. 9, 297–300.

    CAS  Google Scholar 

  • Ohdan T., Francisco Jr, P. B., Sawada T., Hirose T., Terao T., Satoh H. et al. 2005 Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J. Exp. Bot. 56, 3229–3244.

    CAS  PubMed  Google Scholar 

  • Park I. M., Ibáñez A. M. and Shoemaker C. F. 2007 Rice starch molecular size and its relationship with amylose content. Starch-Stärke 59, 69–77.

    CAS  Google Scholar 

  • Parker M. L. 1985 The relationship between A-type and B-type starch granules in the developing endosperm of wheat. J. Cereal Sci. 3, 271–278.

    Google Scholar 

  • Pilling E. and Smith A. M. 2003 Growth ring formation in the starch granules of potato tubers. Plant Physiol. 132, 365–371.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Posner E. S. 2000 Wheat. In Hand book of cereal science and technology (ed. K. Kulp and J. G. Ponte), 2nd edition, pp. 1–30. Marcel Dekker, New York, USA.

    Google Scholar 

  • Rahman S., Li Z., Batey I., Cochrane M. P., Appels R. and Morell M. 2000 Genetic alteration of starch functionality in wheat. J. Cereal Sci. 31, 91–110.

    CAS  Google Scholar 

  • Rahman S., Regina A., Li Z., Mukai Y., Yamamoto M., Kosar-Hashemi B. et al. 2001 Comparison of starch-branching enzyme genes reveals evolutionary relationships among isoforms. Characterization of a gene for starch-branching enzyme IIa from wheat D genome donor Aegilops tauschii. Plant Physiol. 125, 1314–1324.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rahman S., Li Z., Regina A., Kosar-Hashemi B., McMaugh S., Konik-Rose C. et al. 2005 Genetic control of wheat starch biosynthesis. Wheat Information Service 100, 77–88.

    Google Scholar 

  • Rahman S., Bird A., Regina A., Li Z., Philippe Ral J., McMaugh S. et al. 2007 Resistant starch in cereals: exploiting genetic engineering and genetic variation. J. Cereal Sci. 46, 251–260.

    CAS  Google Scholar 

  • Ratnayake W. S. and Jackson D. S. 2007 A new insight into th gelatinization process of native starches. Carbohydr. Polym. 67, 511–529.

    CAS  Google Scholar 

  • Reeves C. D., Krishnan H. B. and Okita T.W. 1986 Gene expression in developing wheat endosperm: accumulation of gliadin and ADPglucose pyrophosphorylase messenger RNAs and polypeptides. Plant Physiol. 82, 34–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Regina A., Bird A., Topping D., Bowden S., Freeman J., Barsby T. et al. 2006 High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc. Natl. Acad. Sci. USA 103, 3546–3551.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sabouri H. 2009 QTL detection of rice grain quality traits by microsatellite markers using an indica rice (Oryza sativa L.) combination. J. Genet. 88, 81–85.

    PubMed  Google Scholar 

  • Sano Y. 1984 Differential regulation of waxy gene expression in rice endosperm. Theor. Appl. Genet. 68, 467–473.

    CAS  PubMed  Google Scholar 

  • Satoh H., Nishi A., Yamashita K., Takemoto Y., Tanaka Y., Hosaka Y. et al. 2003 Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol. 133, 1111–1121.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Satoh H., Shibahara K., Tokunaga T., Nishi A., Tasaki M., Hwang S. K. et al. 2008 Mutation of the plastidial α-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 20, 1833–1849.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Septiningsih E. M., Trijatmiko K. R., Moeljopawiro S. and McCouch S. R. 2003 Identification of quantitative trait loci for grain quality in an advance backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor. Appl. Genet. 107, 1433–1441.

    CAS  PubMed  Google Scholar 

  • Sestili F., Botticella E., Proietti G., Janni M., D’Ovidio R. and Lafiandra D. 2012. OSC Plant Breed. 131, 700–706.

    CAS  Google Scholar 

  • Siebenmorgen T. J., Bautista R. C. and Meullenet J. F. 2006 Predicting rice physicochemical properties using thickness fraction properties 83, 275–283.

    Google Scholar 

  • Singletary G. W. 2000 Starch synthesis and grain filling in wheat. In Carbohydrate reserves in plants–synthesis and regulation (ed. A. K. Gupta and N. Kaur), pp. 79–105. Elsevier Science, Amsterdam, The Netherlands.

  • Slade A. J., McGuire C., Loeffler D., Mullenberg J., Skinner W., Fazio G. et al. 2012 Development of high amylose wheat through TILLING. BMC Plant Biol. 12, 69.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith A. M., Denyer K. and Martin C. 1997 The synthesis of the starch granule. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 67–87.

    CAS  PubMed  Google Scholar 

  • Stoddard F. L 1999 Survey of starch particle-size distribution in wheat and related species. Cereal Chem. 76, 145–149.

    CAS  Google Scholar 

  • Sun H., Lü J., Fan Y., Zhao Y., Kong F., Li R. et al. 2008 Quantitative trait loci (QTLs) for quality traits related to protein and starch in wheat. Prog. Nat. Sci. 18, 825–831.

    CAS  Google Scholar 

  • Swamy B. P., Kaladhar K., Shobha Rani N., Prasad G. S., Viraktamath B. C., Reddy G. A. et al. 2012 QTL analysis for grain quality traits in 2 BC2F2 populations derived from crosses between Oryza sativa cv Swarna and 2 accessions of O. nivara. J. Hered. 103, 442–452.

    CAS  PubMed  Google Scholar 

  • Takeda Y., Shirasaka K. and Hizukuri S. 1984 Examination of the purity and structure of amylose by gel-permeation chromatography. Carbohyd. Res. 132, 83–92.

    CAS  Google Scholar 

  • Takeda Y., Hizukuri S. and Juliano B. O. 1986 Purification and structure of amylose from rice starch. Carbohydr. Res. 148, 299–308.

    CAS  Google Scholar 

  • Takeda Y., Tomooka S. and Hizukuri S. 1993 Structures of branched and linear molecules of rice amylose. Carbohydr. Res. 246, 267–272.

    CAS  Google Scholar 

  • Tan Y. F., Li J. X., Yu S. B., Xing Y. Z., Xu C. G. and Zhang Q. F. 1999 The three important traits for cooking and eating qualities of rice grain are controlled by a single locus. Theor. Appl. Genet. 99, 642–648.

    CAS  PubMed  Google Scholar 

  • Tetlow I. J. 2006 Understanding storage starch biosynthesis in plants: a means to quality improvement. Can. J. Bot. 84, 1167–1185.

    CAS  Google Scholar 

  • Tetlow I. J., Beisel K. G., Cameron S., Makhmoudova A., Liu F., Bresolin N. S. et al. 2008 Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol. 146, 1878–1891.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thorbjørnsen T., Villand P., Denyer K., Olsen O. A. and Smith A. M. 1996 Distinct isoforms of ADP glucose pyrophosphorylase occur inside and outside the amyloplasts in barley endosperm. Plant J. 10, 243–250.

    Google Scholar 

  • Toyota K., Tamura M., Ohdan T. and Nakamura Y. 2006 Expression profiling of starch metabolism-related plastidic translocator genes in rice. Planta 223, 248–257.

    CAS  PubMed  Google Scholar 

  • Tsai C. Y. 1974 The function of the waxy locus in starch synthesis in maize endosperm. Biochem. Genet. 11, 83–96.

    CAS  PubMed  Google Scholar 

  • Urbano M., Margiotta B., Colaprico G. and Lafiandra D. 2002 Waxyprotein in diploid, tetraploid and hexaploid wheats. Plant Breed. 121, 1–5.

    Google Scholar 

  • Vandeputte G. E. and Delcour J. A. 2004 From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohyd. Polym. 58, 245–266.

    CAS  Google Scholar 

  • van der Burgt Y. E. M., Bergsma J., Bleeker I. P., Mijland P. J. H. C., van der Kerk, van Hoof A., Kamerling J. P. et al. 1999 Distribution of methyl substituents over crystalline and amorphous domains in methylated starches. Carbohyd. Res. 320, 100–107.

    CAS  Google Scholar 

  • Villareal C. P. and Juliano B. O. 1989 Comparative levels of waxy gene product of endosperm starch granules of different rice ecotypes. Starch-Stärke 41, 369–371.1

    CAS  Google Scholar 

  • Vrinten P. L. and Nakamura T 2000 Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues. Plant Physiol. 122, 255–263.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wan X. Y., Wan J. M., Su C. C., Wang C. M., Shen W. B., Li J. M. et al. 2004 QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines. Theor. Appl. Genet. 110, 71–79.

    CAS  PubMed  Google Scholar 

  • Wang Z. Y., Wu Z. L., Xing Y. Y., Zheng F. G., Guo X. L., Zhang W. G. et al. 1990 Nucleotide sequence of rice waxy gene. Nucleic Acids Res. 18, 5898.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang T. L., Bogracheva T. Y. and Hedley C. L. 1998 Starch: as simple as A, B, C? J. Exp. Bot. 49, 481–502.

    CAS  Google Scholar 

  • Wardlaw I. F., Moncur L. and Patrick J. W. 1995 The response of wheat to high temperature following anthesis. II sucrose accumulation and metabolism by isolated kernels. Aust. J. Plant Physiol. 22, 399–407.

    CAS  Google Scholar 

  • Wei C., Zhang J., Chen Y., Zhou W., Xu B., Wang Y. et al. 2010a Physicochemical properties and development of wheat large and small starch granules during endosperm development. Acta Physiol. Plant. 32, 905–916.

    Google Scholar 

  • Wei C., Qin F., Zhu L., Zhou W., Chen Y., Wang Y. et al. 2010b Microstructure and ultrastructure of high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme. J. Agric. Food Chem. 58, 1224–1232.

    CAS  PubMed  Google Scholar 

  • Wei C., Qin F., Zhou 998 W., Chen Y., Xu B., Wang Y. et al. 2010c Formation of semi-compound C-type starch granule in high-amylose rice developed by antisense RNA inhibition of starch-branching enzyme. J. Agric. Food Chem. 58, 11097–11104.

    CAS  PubMed  Google Scholar 

  • Wu H. C. H. and Sarko A. 1978a Packing analysis of carbohydrates and polysaccharides. 9. Double helical molecular-structure of crystalline A-amylose. Carbohdr. Res. 61, 27–40.

    CAS  Google Scholar 

  • Wu H. C. H. and Sarko A. 1978b Packing analysis of carbohydrates and polysaccharides. 8. Double helical molecular-structure of crystalline B-amylose. Carbohdr. Res. 61, 7–25.

    CAS  Google Scholar 

  • Yamamori M., Fujita S., Hayakawa K., Matsuki J. and Yasui T. 2000 Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. Theor. Appl. Genet. 101, 21–29.

    CAS  Google Scholar 

  • Yang C. Z., Shu X. L., Zhang L. L., Wang X. Y., Zhao H. J., Ma C. X. and Wu D.X. 2006 Starch properties of mutant rice high in resistant starch. J. Agric. Food Chem. 54, 523–528.

    CAS  PubMed  Google Scholar 

  • Yoo S. H. and Jane J. L. 2002 Structural and physical characteristics of waxy and other wheat starches. Carbohyd. Polym. 49, 297–305.

    CAS  Google Scholar 

  • Yuan P. R., Kim H. J., Chen Q. H., Ju H. G., Ji S. D. and Ahn S. N. 2010 Mapping QTLs for grain quality using an introgression line population from a cross between Oryza sativa and O. rufipogon. J. Crop Sci. Biotechnol. 13, 205–212.

    Google Scholar 

  • Zhang X. M., Shi C. H., Wu J. G., Hisamitus H., Katsura T., Feng S. Y. et al. 2003 Analysis of variations in the amylose content of grains located at different positions in the rice panicle and the effect of milling. Starch–Stärke 55, 265–270.

    CAS  Google Scholar 

  • Zhong F., Wallace Y., Wang Q. and Shoemaker C. F. 2006 Rice starch, amylopectin, and amylose, molecular weight and solubility in dimethyl sulfoxide-based solvents. J. Agric. Food Chem. 54, 2320–2326.

    CAS  PubMed  Google Scholar 

  • Zhu T., Jackson D. S.,Wehling R. L. and Geera B 2008 Comparison of amylose determination methods and the development of a dual wavelength iodine binding technique. Cereal Chem. 85, 51–58.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PARVIZ FASAHAT.

Additional information

[Fasahat P., Rahman S. and Ratnam W. 2014 Genetic controls on starch amylose content in wheat and rice grains. J. Genet. 93, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

FASAHAT, P., RAHMAN, S. & RATNAM, W. Genetic controls on starch amylose content in wheat and rice grains. J Genet 93, 279–292 (2014). https://doi.org/10.1007/s12041-014-0325-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-014-0325-8

Keywords.

Navigation