Skip to main content
Log in

Estimating genetic correlations based on phenotypic data: a simulation-based method

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Knowledge of genetic correlations is essential to understand the joint evolution of traits through correlated responses to selection, a difficult and seldom, very precise task even with easy-to-breed species. Here, a simulation-based method to estimate genetic correlations and genetic covariances that relies only on phenotypic measurements is proposed. The method does not require any degree of relatedness in the sampled individuals. Extensive numerical results suggest that the propose method may provide relatively efficient estimates regardless of sample sizes and contributions from common environmental effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Becker W. A. 1984 Manual of quantitative genetics, 4th edition. Academic Enterprises, Pullman, USA.

    Google Scholar 

  • Cheverud J. M. 1988 A comparison of genetic and phenotypic correlations. Evolution 42, 958–968.

    Article  Google Scholar 

  • Cheverud J. M. 1995 Morphological integration in the saddle-back tamarin (Saguinus fuscicollis) cranium. Am. Nat. 145, 63–89.

    Article  Google Scholar 

  • Coyne J. A. and Beecham E. 1987 Heritability of two morphological characters within and among natural populations of Drosophila melanogaster. Genetics 117, 727–737.

    PubMed  CAS  Google Scholar 

  • David J. 1962 A new medium for rearing Drosophila in axenic conditions. Drosophila Inform. Ser. 36, 128.

    Google Scholar 

  • Efron B. and Tibshirani R. J. 1993 An introduction to the bootstrap. Chapman and Hall, New York, USA.

    Google Scholar 

  • Falconer D. S. and Mackay T. F. C. 1996 Introduction to quantitative genetics, 4th edition. Longman, Harlow, UK.

    Google Scholar 

  • Hill W. G. and Thompson R. 1978 Probabilities of non-positive definite between-group or genetic covariance matrices. Biometrics 34, 429–439.

    Article  Google Scholar 

  • Kempthorne O. 1957 An introduction to genetic statistics. John Wiley, New York, USA.

    Google Scholar 

  • Kendall M. G. and Stuart A. 1951 The advanced theory of statistics. Hafner, London, UK.

    Google Scholar 

  • Laayouni H., Santos M. and Fontdevila A. 2000 Toward a physical map of Drosophila buzzatii: use of randomly amplified polymorphic DNA polymorphisms and sequence-tagged-site landmarks. Genetics 156, 1797–1816.

    PubMed  CAS  Google Scholar 

  • Lande R. 1979 Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33, 402–416.

    Article  Google Scholar 

  • Leibowitz A., Santos M. and Fontdevila A. 1995 Heritability and selection on body size in a natural population of Drosophila buzzatii. Genetics 141, 181–189.

    PubMed  CAS  Google Scholar 

  • Loeschcke V., Bundgaard J. and Barker J. S. F. 1999 Reaction norms across and genetic parameters at different temperatures for thorax and wing size traits in Drosophila aldrichi and D. buzzatii. J. Evol. Biol. 12, 605–623.

    Article  Google Scholar 

  • Lynch M. 1999 Estimating genetic correlations in natural populations. Genet. Res. 74, 255–264.

    Article  PubMed  CAS  Google Scholar 

  • Lynch M. and Walsh B. 1998 Genetics and analyses of quantitative traits. Sinauer, Sundrland, USA.

    Google Scholar 

  • Prout T. and Barker J. S. F. 1989 Ecological aspects of the heritability of body size in Drosophila buzzatii. Genetics 123, 803–813.

    PubMed  CAS  Google Scholar 

  • Riska B., Prout T. and Turelli M. 1989 Laboratory estimates of heritabilities and genetic correlations in nature. Genetics 123, 865–871.

    PubMed  CAS  Google Scholar 

  • Ritland K. 1996 A marker-based method for inferences about quantitative inheritance in natural populations. Evolution 50, 1062–1073.

    Article  Google Scholar 

  • Roff D. A. 1995 The estimation of genetic correlations from phenotypic correlations: a test of Cheverud’s conjecture. Heredity 74, 481–490.

    Article  Google Scholar 

  • Roff D. A. 1996 The evolution of genetic correlations: an analysis of patterns. Evolution 50, 1392–1403.

    Article  Google Scholar 

  • Ruiz A., Santos M., Barbadilla A., Quezada-Díaz J. E., Hasson E. and Fontdevila A. 1991 Genetic variance for body size in a natural population of Drosophila buzzatii. Genetics 128, 739–750.

    PubMed  CAS  Google Scholar 

  • Searle S. R., Casella G. and McCulloch C. E. 1992 Variance components. John Wiley, New York, USA.

    Book  Google Scholar 

  • Weigensberg I. and Roff D. A. 1996 Natural heritabilities: can they be reliably estimated in the laboratory? Evolution 50, 2149–2157.

    Article  Google Scholar 

  • Willis J. H., Coyne, J. A. and Kirkpatrick M. 1991 Can one predict the evolution of quantitative characters without genetics? Evolution 45, 441–444.

    Article  Google Scholar 

  • Young S. S. Y. and Weiler H. 1960 Selection for two correlated traits by independent culling levels. J. Genet. 57, 329–233.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ELIAS ZINTZARAS.

Additional information

[Zintzaras E. 2011 Estimating genetic correlations based on phenotypic data: a simulation-based method. J. Genet. 90, 51–58]

Rights and permissions

Reprints and permissions

About this article

Cite this article

ZINTZARAS, E. Estimating genetic correlations based on phenotypic data: a simulation-based method. J Genet 90, 51–58 (2011). https://doi.org/10.1007/s12041-011-0021-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-011-0021-x

Keywords

Navigation