Skip to main content
Log in

Prediction of longitudinal dispersion coefficient using multivariate adaptive regression splines

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

In this paper, multivariate adaptive regression splines (MARS) was developed as a novel soft-computing technique for predicting longitudinal dispersion coefficient (D L ) in rivers. As mentioned in the literature, experimental dataset related to D L was collected and used for preparing MARS model. Results of MARS model were compared with multi-layer neural network model and empirical formulas. To define the most effective parameters on D L , the Gamma test was used. Performance of MARS model was assessed by calculation of standard error indices. Error indices showed that MARS model has suitable performance and is more accurate compared to multi-layer neural network model and empirical formulas. Results of the Gamma test and MARS model showed that flow depth (H) and ratio of the mean velocity to shear velocity (u/u ) were the most effective parameters on the D L .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Atkinson T and Davis P 2000 Longitudinal dispersion in natural channels: l. Experimental results from the River Severn, UK; Hydrol. Earth Syst. Sci. 4(3) 345–353.

    Article  Google Scholar 

  • Azamathulla H and Ghani A 2011 Genetic programming for predicting longitudinal dispersion coefficients in streams; Water Resour. Manag. 25(6) 1537–1544.

    Article  Google Scholar 

  • Azamathulla H M and Wu F-C 2011 Support vector machine approach for longitudinal dispersion coefficients in natural streams; Appl. Soft Comput. 11(2) 2902–2905.

    Article  Google Scholar 

  • Benedini M and Tsakiris G 2013 Water quality modelling for rivers and streams; Springer Science & Business Media.

  • Chao X, Jia Y, Shields F D, Wang S S and Cooper C M 2007 Numerical modeling of water quality and sediment related processes; Ecol. Modelling 201(3) 385–397.

    Article  Google Scholar 

  • Davis P and Atkinson T 2000 Longitudinal dispersion in natural channels: 3. An aggregated dead zone model applied to the River Severn, UK; Hydrol. Earth Syst. Sci. 4(3) 373–381.

    Article  Google Scholar 

  • Davis P, Atkinson T and Wigley T 2000 Longitudinal dispersion in natural channels: 2. The roles of shear flow dispersion and dead zones in the River Severn, UK; Hydrol. Earth Syst. Sci. 4(3) 355–371.

    Article  Google Scholar 

  • Disley T, Gharabaghi B, Mahboubi A A and McBean E A 2015 Predictive equation for longitudinal dispersion coefficient; Hydrol. Process. 29(2) 161–172.

    Article  Google Scholar 

  • Elder J W 1959 The dispersion of a marked fluid in turbulent shearflow; J. Fluid Mech. 5(4) 544–560.

    Article  Google Scholar 

  • El Kadi Abderrezzak K, Ata R and Zaoui F 2015 One-dimensional numerical modelling of solute transport in streams: The role of longitudinal dispersion coefficient ; J. Hydrol. 527 978–989.

    Article  Google Scholar 

  • Fisher B H 1967 The mechanics of dispersion in natural streams; J. Hydraul. Div. 93(6) 187–216.

    Google Scholar 

  • Friedman J H 1991 Multivariate adaptive regression splines; The Annals of Statistics 19 1–67.

    Article  Google Scholar 

  • Iwasa Y and Aya S 1991 Predicting longitudinal dispersion coefficient in open channel flows; In: Proceedings of International Symposium on Environmental Hydraulics, Hong Kong, pp. 505–510.

  • Ji Z -G 2008 Hydrodynamics and water quality: Modeling rivers, lakes, and estuaries; John Wiley & Sons.

  • Kashefipour S M and Falconer R A 2002 Longitudinal dispersion coefficients in natural channels; Water Res. 36(6) 1596–1608. doi: 10.1016/S0043-1354(01)00351-7.

    Article  Google Scholar 

  • Koussis A D and Rodriguez-Mirasol J 1998 Hydraulic estimation of dispersion coefficient for streams; J. Hydraul. Eng. 124 317–320.

    Article  Google Scholar 

  • Leta O, Shrestha N, de Fraine B, van Griensven A and Bauwens W 2014 Integrated water quality modelling of the river Zenne (Belgium) using open MI; In: Advances in Hydroinformatics (eds) P Gourbesville, J Cunge and G Caignaert, Springer Singapore, pp. 259–274.

  • Li Z H, Huang J and Li J 1998 Preliminary study on longitudinal dispersion coefficient for the gorges reservoir; In:Proceedings of the seventh International Symposium Environmental Hydraulics,16–18December,HongKong,China.

  • Liu H 1977 Predicting dispersion coefficient of stream; J. Environ. Eng. Div. 103(1) 59–69.

    Google Scholar 

  • McQuivey R S and Keefer T N 1974 Simple method for predicting dispersion in streams; J. Environ. Eng. Div. 100(4) 997–1011.

    Google Scholar 

  • Najafzadeh M and Sattar A A 2015 Neuro-Fuzzy GMDH approach to predict longitudinal dispersion in water networks; Water Resour. Manag. 29(7) 2205–2219.

    Article  Google Scholar 

  • Noori R, Karbassi A, Farokhnia A and Dehghani M 2009 Predicting the longitudinal dispersion coefficient using support vector machine and adaptive Neuro-Fuzzy inference system techniques; Environ. Eng. Sci. 26(10) 1503–1510.

    Article  Google Scholar 

  • Noori R, Deng Z, Kiaghadi A and Kachoosangi F T 2015a How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers? J. Hydraul. Eng. 04015039.

  • Noori R, Yeh H -D, Abbasi M, Kachoosangi F T and Moazami S 2015b Uncertainty analysis of support vector machine for online prediction of five-day biochemical oxygen demand; J. Hydrol. 527 833–843.

  • Parsaie A and Haghiabi A 2015a Computational modeling of pollution transmission in rivers; Appl. Water Sci., pp. 1–10, doi: 10.1007/s13201-015-0319-6.

  • Parsaie A and Haghiabi A 2015b The effect of predicting discharge coefficient by neural network on increasing the numerical modeling accuracy of flow over side Weir; Water Resour. Manag. 29(4) 973–985.

    Article  Google Scholar 

  • Parsaie A and Haghiabi A 2015c Predicting the longitudinal dispersion coefficient by radial basis function neural network ; Modeling Earth Systems and Environment 1(4) 1–8.

    Article  Google Scholar 

  • Parsaie A and Haghiabi A H 2015d Calculating the longitudinal dispersion coefficient in river. Case study: Severn River, UK; Int. J. Sci. Res. Environ. Sci. 3(5) 199–207.

    Google Scholar 

  • Rajeev R S and Dutta S 2009 Prediction of longitudinal dispersion coefficients in natural rivers using genetic algorithm; Hydrol. Res. 40(6) 544–552.

    Article  Google Scholar 

  • Riahi-Madvar H, Ayyoubzadeh S A, Khadangi E and Ebadzadeh M M 2009 An expert system for predicting longitudinal dispersion coefficient in natural streams by using ANFIS; Expert Systems with Applications 36(4) 8589–8596.

    Article  Google Scholar 

  • Samadi M, Jabbari E, Azamathulla H and Mojallal M 2015 Estimation of scour depth below free overfall spillways using multivariate adaptive regression splines and artificial neural networks; Engineering Applications of Computational Fluid Mechanics 9(1) 291–300.

    Article  Google Scholar 

  • Sattar A M A and Gharabaghi B 2015 Gene expression models for prediction of longitudinal dispersion coefficient in streams; J. Hydrol. 524 587–596.

    Article  Google Scholar 

  • Seo I and Baek K 2004 Estimation of the longitudinal dispersion coefficient using the velocity profile in natural streams; J. Hydraul. Eng. 130(3) 227–236.

    Article  Google Scholar 

  • Seo I and Cheong T 1998 Predicting longitudinal dispersion coefficient in natural streams; J. Hydraul. Eng. 124(1) 25–32.

    Article  Google Scholar 

  • Sharda V, Prasher S, Patel R, Ojasvi P and Prakash C 2008 Performance of multivariate adaptive regression splines (MARS) in predicting runoff in mid-Himalayan micro-watersheds with limited data/Performances de régressions par splines multiples et adaptives (MARS) pour la prévision d’écoulement au sein de micro-bassins versants Himalayens d’altitudes intermédiaires avec peu de données; Hydrol. Sci. J. 53(6) 1165–1175.

    Article  Google Scholar 

  • Stamou A I 1992 Improving the numerical modeling of river water quality by using high order difference schemes; Water Res. 26(12) 1563–1570.

    Article  Google Scholar 

  • Tavakollizadeh A and Kashefipur S M 2007 Effects of dispersion coefficient on quality modeling of surface waters; In: Proceedings of the sixth International Symposium on River Engineering, Ahwaz, Iran, 16–18 October 2007, pp. 67–78.

  • Wang Z -Y, Lee J W and Melching C 2015 Water Quality Management. River Dynamics and Integrated River Management; Springer Berlin-Heidelberg, pp. 555–631.

  • Zeng Y and Huai W 2014 Estimation of longitudinal dispersion coefficient in rivers; J. Hydroenviron. Res. 8(1) 2–8.

    Google Scholar 

  • Zhang W and Goh A T C 2014 Multivariate adaptive regression splines and neural network models for prediction of pile drivability; Geosci. Frontiers 7(1) 45–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AMIR HAMZEH HAGHIABI.

Additional information

Corresponding editor: Subimal Ghosh

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

HAGHIABI, A.H. Prediction of longitudinal dispersion coefficient using multivariate adaptive regression splines. J Earth Syst Sci 125, 985–995 (2016). https://doi.org/10.1007/s12040-016-0708-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-016-0708-8

Keywords

Navigation