Skip to main content
Log in

Rb–Sr and Sm–Nd study of granite–charnockite association in the Pudukkottai region and the link between metamorphism and magmatism in the Madurai Block

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Pudukkottai region in the northeastern part of the Madurai Block exposes the garnetiferous pink granite that intruded the biotite gneiss. Charnockite patches are associated with both the rock types. Rb–Sr biotite and Sm–Nd whole-rock isochron ages indicate a regional uplift and cooling at ∼550 Ma. The initial Nd isotope ratios (\(\varepsilon _{\text {Nd}}^{\mathrm {t}}=-20\) to −22) and Nd depleted-mantle model ages (TDM = 2.25 to 2.79 Ga) indicate a common crustal source for the pink-granite and associated charnockite, while the biotite gneiss and the charnockite within it represent an older crustal source (\(\varepsilon _{\text {Nd}}^{\mathrm {t}}= -29\) and TDM = > 3.2 Ga). The Rb–Sr whole-rock data and initial Sr–Nd isotope ratios also help demonstrate the partial but systematic equilibration of Sr isotope and Rb/Sr ratios during metamorphic mineral-reactions resulting in an ‘apparent whole-rock isochron’. The available geochronological results from the Madurai Block indicate four major periods of magmatism and metamorphism: Neoarchaean–Paleoproterozoic, Mesoproterozoic, mid-Neoproterozoic and late-Neoproterozoic. We suggest that the high-grade and ultrahigh-temperature metamorphism was preceded by magmatism which ‘prepared’ the residual crust to sustain the high PT conditions. There also appears to be cyclicity in the tectono-magmatic events and an evolutionary model for the Madurai Block should account for the cyclicity in the preserved records.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Anderson J R, Payne J L, Kelsey D E, Hand M, Collins A S and Santosh M 2012 High-pressure granulites at the dawn of the Proterozoic; Geology 40 431–434.

    Article  Google Scholar 

  • Bartlett J M, Dougherty-Page J S, Harris N B W, Hawkesworth C J and Santosh M 1998 The application of single zircon evaporation and model Nd ages to the interpretation of polymetamorphic terrains: An example from the Proterozoic mobile belt of south India; Contrib. Mineral. Petrol. 131 81–135.

    Article  Google Scholar 

  • Bhaskar Rao Y J, Chetty T R K, Janardhan A S and Gopalan K 1996 Sm–Nd and Rb–Sr and P–T history of the Archean Sittampundi and Bhavani layered meta-anorthosite complexes in Cauvery shear zone, south India: Evidence for Neoproterozoic reworking of Archean crust; Contrib. Mineral. Petrol. 125 237–250.

    Article  Google Scholar 

  • Bhattacharya S, Santosh M, Zhang Z, Huang H., Banerjee A, George P M and Sajeev K 2014 Imprints of Archean to Neoproterozoic crustal processes in the Madurai Block, southern India; J. Asian Earth Sci. 88 1–10.

    Article  Google Scholar 

  • Brandt S, Raith M M, Schenk V, Sengupta P, Srikantappa C and Gerdes A 2014 Crustal evolution of the Southern Granulite Terrane, south India: New geochronological and geochemical data for felsic orthogneisses and granites; Precamb. Res. 246 91–122.

    Article  Google Scholar 

  • Braun I, Cenki-Tok B, Paquettec J L and Tiepolo M 2007 Petrology and U–Th–Pb geochrnology of the sapphirine-quartz-bearing metapelites from Rajapalayam, Madurai Block, southern India: Evidence for polyphase Neoproterozoic high-grade metamorphism; Chem. Geol. 241 129–147.

    Article  Google Scholar 

  • Brown M and Korhonen F J 2009 Some remarks on melting and extreme metamorphism of crustal rocks; In: Physics and Chemistry of the Earth (ed.) Dasgupta S, Indian National Science Academy, pp. 67–87.

  • Brown M 2013 Granite: From genesis to emplacement; Bull. Geol. Soc. Am. 125 (7–8) 1079–1113.

    Article  Google Scholar 

  • Caro G, Bourdon B, Birck J L and Moorbath S 2003 146Sm– 142Nd evidence from Isua metamorphosed sediments for early differentiation; Nature 423 428–432.

    Article  Google Scholar 

  • Cenki B and Kriegsman L M 2005 Tectonics of the Neoproterozoic Southern Granulite Terrain, south India ; Precamb. Res. 138 37–56.

    Article  Google Scholar 

  • Chandra Sekaran M, Harsh R, Bhutani R and Bhadra S 2015 Petrogenesis of the charnockite associated with the granite near Pudukkottai in the Madurai Block: Constraints from the field-association, petrography and phase-equilibrium modelling; J. Appl. Geochem. 17 (4) 451–461.

    Google Scholar 

  • Chetty T R K and Bhaskar Rao Y J 2006 The Cauvery Shear Zone, Southern Granulite Terrain, India: A crustal-scale flower structure; Gondwana Res. 10 77–85.

    Article  Google Scholar 

  • Clark C, Fitzsimons I C W, Healy D and Harley S L 2011 How does the continental crust get really hot?; Elements 7 235–240.

    Article  Google Scholar 

  • Clark C, Healy D, Johnson T, Collins A S, Taylor R J, Santosh M and Timms N E 2015 Hot orogens and supercontinent amalgamation: A Gondwanan example from southern India Gondwana Res., doi: 10.1016/j.gr.2014.11.005.

  • Collins A S, Clark C, Sajeev K, Santosh M, Kelsey D E and Hand M 2007 Passage through India: The Mozambique Ocean suture, high-pressure granulites and the Palghat–Cauvery shear zone system; Terra Nova 19 141–147.

    Article  Google Scholar 

  • Dodson M H 1973 Closure temperature in cooling geochronological and petrological systems; Contrib. Mineral. Petrol. 40 (3) 259–273.

    Article  Google Scholar 

  • Endo T, Tsunogae T and Santosh M 2012 Mineral equilibrium modeling of incipient charnockite and adjacent garnet-biotite gneiss from southern India; Japan Geoscience Union Meeting 2012, Conference volume.

  • George P M, Santosh M, Chen N, Nandakumar V, Itaya T, Sonali M K, Smruti R P and Sajeev K 2015 Cryogenian magmatism and crustal reworking in the Southern Granulite Terrane, India; Int. Geol. Rev., doi: 10.1080/00206814.2014.999260.

  • Ghosh J G, Wit M J d and Zartman R E 2004 Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies; Tectonics 23 (3) 1–38.

    Article  Google Scholar 

  • Glodny J, Kuhn A and Austrheim H 2008 Diffusion versus recrystallization processes in Rb–Sr geochronology: Isotopic relics in eclogite facies rocks, Western Gneiss, Norway; Geochim. Cosmochim. Acta 72 (2) 506–525.

    Article  Google Scholar 

  • GSI 2000 Pudukkottai District Resource Map.

  • Hansen E C, Janardhan A S, Newton R C, Prame W K B N and Kumar G R R 1987 Arrested charnockite formation in southern India and Sri Lanka; Contrib. Mineral. Petrol. 86 225–244.

    Article  Google Scholar 

  • Hansen E C and Harlov D E 2009 Orthophosphate and biotite chemistry from orthopyroxene-bearing migmatites from California and South India: The role of a fluid-phase in the evolution of granulite-facies migmatites; Mineral. Petrol. 95 (3–4) 201–217.

    Article  Google Scholar 

  • Jager E 1965 Rb–Sr age determination on minerals and rocks from the Alps; Sci. Terre. 10 395–406.

    Google Scholar 

  • Jayananda M, Janardhan A S, Sivasubramanian P and Peucat J-J 1995 Geochronology and isotopic constraints on granulite formation in the Kodaikanal area, southern India; Geol. Soc. India Memoir 34 373–390.

    Google Scholar 

  • Jenkin G R T, Ellam R M, Rogers G and Stuart F M 2001 An investigation of closure temperature of the biotite Rb–Sr system: The importance of cation exchange; Geochim. Cosmochim. Acta 65 (7) 1141–1160.

    Article  Google Scholar 

  • Kelsey D E and Hand M 2015 On ultrahigh-temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings; Geosci. Frontiers 6 (3) 311–356.

    Article  Google Scholar 

  • Kooijman E, Upadhyay D, Mezger K, Raith M M, Berndt J and Srikantappa C 2011 Response of the U–Pb chronometer and trace elements in zircon to ultrahigh temperature metamorphism: The Kadavur anorthosite complex, southern India; Chem. Geol. 290 177–188.

    Article  Google Scholar 

  • Ludwig K 2001 Isoplot/Ex, rev2.49 A geochronological toolkit for Microsoft Excel; Berkely Geochronology Center, Special Publications 1a.

  • Miller J S, Santosh M, Pressley R, Clements A S and Rogers J J W 1996 A Pan-African thermal event in southern India; J. Southeast Asian Earth Sci. 14 (3–4) 127–136.

    Article  Google Scholar 

  • Mukhopadhyay D, Senthil Kumar P, Srinivasan R and Bhattacharya T 2003 Nature of the Palghat–Cauvery lineament in the region south of Namakkal, Tamil Nadu: Implications for terrane assembly in the South Indian Granulite Province; In: Tectonics of Southern Granulite Terrain Kuppam–Palani Geotransect (ed.) Ramakrishnan M; Geol. Soc. India Bangalore Memoir 50 279–296.

  • Nathan N P, Balasubramanian E, Gosh S and Barman T R 2001 Neoproterzoic acid magmatism in Tamil Nadu, south India: Geochemical and geochronologic constraints; Gondwana Res. 4 (4) 714–715.

    Article  Google Scholar 

  • Nebel O and Mezger K 2008 Timing of thermal stabilization of Zimbabwe craton deduced from high-precision Rb–Sr chronology, Great Dyke; Precamb. Res. 164 227–232.

    Article  Google Scholar 

  • Newton R C, Smith J V and Windley B F 1980 Carbonic metamorphism, granulites and crustal growth; Nature 288 (5786) 45–50.

    Article  Google Scholar 

  • Pandey U K, Pandey B K and Krishnamurthy P 2005 Geochronology (Rb–Sr, Sm–Nd and Pb–Pb) of the Proterozoic granulitic and granitic rocks around Usilampatti, Madurai District, Tamil Nadu: Implications on age of various lithounits; J. Geol. Soc. India 66 539–551.

    Google Scholar 

  • Pichamuthu C S 1960 Charnockite in the making; Nature 188 135–136.

    Article  Google Scholar 

  • Plavsa D, Collins A S, Foden J F, Kropinski L, Santosh M, Chetty T R K and Clark C 2012 Delineating crustal domains in Peninsular India: Age and chemistry of orthopyroxene-bearing felsic gneisses in the Madurai Block; Precamb. Res. 198–199 77–93.

    Article  Google Scholar 

  • Prakash D 2010 New SHRIMP U–Pb zircon ages of the metapelitic granulites from NW of Madurai, southern India; J. Geol. Soc. India 76 371–383.

    Article  Google Scholar 

  • Rajesh H M 2012 Charnockites and charnockites; Geosci. Frontiers 3 (6) 737–744.

    Article  Google Scholar 

  • Rajesh H M, Santosh M and Yoshikura S 2011 The Nagercoil Charnockite: A magnesian, calcic to calc-alkalic granitoid dehydrated during a granulite-facies metamorphic event; J. Petrol. 52 (2) 375–400.

    Article  Google Scholar 

  • Raith M, Karmakar S and Brown M 1997 Ultra-high-temperature metamorphism and multistage decompressional evolution of sapphirine granulites from the Palni Hill Ranges, southern India; J. Metamor. Geol. 15 379–399.

    Article  Google Scholar 

  • Ram Mohan M, Satyanarayanan M, Santosh M, Sylvester P J, Tubrett M and Lam R 2013 Neoarchean suprasubduction zone arc magmatism in southern India: Geochemistry, zircon U-Pb geochronology and Hf isotopes of the Sittampundi anorthosite complex; Gondwana Res. 23 539–557.

    Article  Google Scholar 

  • Ravindra Kumar G R, Srikantappa C and Hansen E C 1985 Charnockite formation at Ponmudi, southern India; Nature 213 207–209.

    Article  Google Scholar 

  • Sajeev K, Osanai Y and Santosh M 2004 Ultrahigh-temperature metamorphism followed by two-stage decompression of garnet-orthopyroxene-sillimanite granulites from Ganguvapatti, Madurai Block, southern India; Contrib. Mineral. Petrol. 148 29–46.

    Article  Google Scholar 

  • Sajeev K, Santosh M and Kim H S 2006 Partial melting and P–T evolution of the Kodaikanal metapelite belt, southern India; Lithos 92 (2–3) 465–483.

    Article  Google Scholar 

  • Sajeev K, Windley B F, Connoly J A D and Kon Y 2009 Retrogressed eclogite (20 kbar, 1020°C) from the Neoproterozoic Palghat–Cauvery suture zone, southern India; Precamb. Res. 171 23–36.

    Article  Google Scholar 

  • Santosh M, Collins A S, Tamashiro I, Koshimoto S, Tsutsumi Y and Yokoyama M 2006 The timing of ultrahigh-temperature metamorphism in Southern India: U–Th–Pb electron microprobe ages from zircon and monazite in sapphirine bearing granulites; Gondwana Res. 10 128–155.

    Article  Google Scholar 

  • Santosh M, Iyer S S, Vasoncellos M B A and Enzweiler J 1989 Late Precambrian alkaline plutons in southwest India: Geochronologic and rare-earth element constraints on Pan-African magmatism; Lithos 24 65–79.

    Article  Google Scholar 

  • Santosh M, Maruyama S and Sato K 2009 Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India?; Gondwana Res. 16 321– 341.

    Article  Google Scholar 

  • Santosh M, Yokoyama M, Tsutsumi Y and Yoshikura S. -i. 2008 Electron microprobe dating of monazites from an ultrahigh-temperature granulite in Southern India: Implications for the timing of Gondwana assembly; J. Mineral. Petrol. Sci. 103 77–87.

    Article  Google Scholar 

  • Sato K, Santosh M, Chetty T R K and Hirata T 2011 U–Pb zircon geochronology of granites and charnockites from southern India: Implications for magmatic pulses associated with plate tectonic cycles within a Precambrian suture zone; Geol. J., doi: 10.1002/gj.1300.

  • Tateishi K, Tsunogae T, Santosh M and Janardhan A S 2004 First report of sapphirine + quartz assemblage from southern India: Implications for ultrahigh-temperature metamorphism; Gondwana Res. 7 (4) 899–912.

    Article  Google Scholar 

  • Teale W, Collins A S, Foden J, Payne J L, Plavsa D, Chetty T R K, Santosh M and Fanning M 2011 Cryogenian (830 Ma) mafic magmatism and metamorphism in the northern Madurai Block, southern India: A magmatic link between Sri Lanka and Madagascar?; J. Asian Earth Sci. 42 223–233.

    Article  Google Scholar 

  • Tsunogae T and Santosh M 2006 Spinel-sapphirine-quartz bearing composite inclusions within garnet from an ultrahigh-temperature pelitic granulite: Implications for metamorphic history and exhumations path; Lithos 92 524–536.

    Article  Google Scholar 

  • Vielzuef D, Clemens J D, Pin C and Minet E 1990 Granite, granulite and crustal differentiation; In: Granulites and crustal evolution (eds) Vielzuef D and Vidal P, NATO Scientific Publication, Kluwer Academic Publishers, Dordrecht, pp. 59–85.

  • Villa I M 1998 Isotopic closure; Terra Nova 10 42–47.

    Article  Google Scholar 

  • Whalen J B, Currie K L and Chappell B W 1987 A-type granites: Geochemical characteristics, discrimination and petrogenesis; Contrib. Mineral. Petrol. 95 407–419.

    Article  Google Scholar 

  • Zhang J, Ma C and She Z 2012 An early Cretaceous garnet-bearing metaluminous A-type granite intrusion in the East Qinling Orogen, central China: Petrological, mineralogical and geochemical constraints; Geosci. Frontiers 3 (5) 635–646.

    Article  Google Scholar 

  • Zheng Y F 1989 Influences of the nature of initial Rb–Sr system on isochron validity; Chem. Geol. 80 1–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RAJNEESH BHUTANI.

Appendix 1

Appendix 1

Table A1. Compilation of the available geochronological data from Madurai Block, Southern Granulite Terrain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SEKARAN, M.C., BHUTANI, R. & BALAKRISHNAN, S. Rb–Sr and Sm–Nd study of granite–charnockite association in the Pudukkottai region and the link between metamorphism and magmatism in the Madurai Block. J Earth Syst Sci 125, 605–622 (2016). https://doi.org/10.1007/s12040-016-0676-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-016-0676-z

Keywords

Navigation