Skip to main content

Advertisement

Log in

Simulation of CO 2 concentrations at Tsukuba tall tower using WRF-CO 2 tracer transport model

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Simulation of carbon dioxide (CO2) at hourly/weekly intervals and fine vertical resolution at the continental or coastal sites is challenging because of coarse horizontal resolution of global transport models. Here the regional Weather Research and Forecasting (WRF) model coupled with atmospheric chemistry is adopted for simulating atmospheric CO2 (hereinafter WRF-CO2) in nonreactive chemical tracer mode. Model results at horizontal resolution of 27 × 27 km and 31 vertical levels are compared with hourly CO2 measurements from Tsukuba, Japan (36.05°N, 140.13 oE) at tower heights of 25 and 200 m for the entire year 2002. Using the wind rose analysis, we find that the fossil fuel emission signal from the megacity Tokyo dominates the diurnal, synoptic and seasonal variations observed at Tsukuba. Contribution of terrestrial biosphere fluxes is of secondary importance for CO2 concentration variability. The phase of synoptic scale variability in CO2 at both heights are remarkably well simulated the observed data (correlation coefficient >0.70) for the entire year. The simulations of monthly mean diurnal cycles are in better agreement with the measurements at lower height compared to that at the upper height. The modelled vertical CO2 gradients are generally greater than the observed vertical gradient. Sensitivity studies show that the simulation of observed vertical gradient can be improved by increasing the number of vertical levels from 31 in the model WRF to 37 (4 below 200 m) and using the Mellor–Yamada–Janjic planetary boundary scheme. These results have large implications for improving transport model simulation of CO2 over the continental sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Ahmadov R, Gerbig C, Kretschmer R, Koerner S, Neininger B, Dolman A J and Sarrat C 2007 Mesoscale covariance of transport and CO2 fluxes: Evidence from observations and simulations using the WRF-VPRM coupled atmosphere-biosphere model; J. Geophys. Res. 112 D22107. doi: 10.1029/2007JD008552.

    Article  Google Scholar 

  • Bakwin P S, Tans P P, Zhao C, Ussler W I and Quesnell E 1995 Measurements of carbon dioxide on a very tall tower; Tellus 47B 535–549.

    Article  Google Scholar 

  • Ballav S, Patra P K, Takigawa M, Ghosh S, De U K, Maksyutov S, Murayama S, Mukai H and Hashimoto S 2012 Simulation of CO2 concentration over east Asia region with the help of the regional model WRF-CO2 ; J. Meteor. Soc. Japan 90 (6) 959–976.

    Article  Google Scholar 

  • Corbin K D, Denning A S and Gurney K R 2010 The space and time impacts on U.S. regional atmospheric CO2 concentrations from a high resolution fossil fuel CO2 emissions inventory; Tellus 62 (5) 506–511.

    Article  Google Scholar 

  • Denning A, Fung I and Randall D 1995 Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota; Nature 376 240–243.

    Article  Google Scholar 

  • Freitas S R, Longo K M, Silva Dias M A F, Chatfield R, Silva Dias P, Artaxo P, Andreae M O, Grell G, Rodrigues L F, Fazenda A and Panetta J 2009 The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 1: Model description and evaluation; Atmos. Chem. Phys. 9 2843–2861. doi: 10.5194/acp-9-2843-2009.

    Article  Google Scholar 

  • Garcia-Diez M, Fernandez J, Fita L and Yague C 2013 Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe; Quart. J. Roy. Meteorol. Soc. 139 501–514.

    Article  Google Scholar 

  • Gerbig C, Korner S and Lin J C 2008 Vertical mixing in atmospheric tracer transport models: Error characterization and propagation; Atmos. Chem. Phys. 8 591–602.

    Article  Google Scholar 

  • Grell G A, Peckham S E, Schmitz R, McKeen S, Frost G, Skamarock W and Eder B 2005 Fully coupled ‘online’ chemistry within the WRF model; Atmos. Environ. 39 (37) 6957–6975.

    Article  Google Scholar 

  • Haszpra L, Ramonet M, Schmidt M, Barcza Z, Pátkai Z., Tarczay K, Yver C, Tarniewicz J and Ciais P 2012 Variation of CO2 mole fraction in the lower free troposphere, in the boundary layer and at the surface; Atmos. Chem. Phys. 12 8865–8875. doi: 10.5194/acp-12-8865-2012.

    Article  Google Scholar 

  • Hong S-Y and Kim S-W 2008 Stable boundary layer mixing in a vertical diffusion schem; Proc. Ninth Annual WRF User’s Workshop, Boulder, CO, National Center for Atmospheric Research 3.3 [http://www.mmm.ucar.edu/wrf/users/workshops/WS2008/abstracts/3-03.pdf].

  • Hu X-M, Nielsen-Gammon J W and Zhang F 2010 Evaluation of three planetary boundary layer schemes in the WRF Mode; J. Appl. Meteorol. Climatol. 49 1831–1844.

    Article  Google Scholar 

  • Inoue H Y and Matsueda H 2001 Measurements of atmospheric CO2 from a meteorological tower in Tsukuba, Japan; Tellus 53 (3) 205–219.

    Article  Google Scholar 

  • Janjic Z I 1994 The step-mountain Eta coordinate model: Further developments of the convection, viscous layer, and turbulence closure scheme; Mon. Wea. Rev. 122 927–945.

    Article  Google Scholar 

  • Kretschmer R, Gerbig C, Kartens U and Koch F T 2012 Error characterization of CO2 vertical mixing in the atmospheric transport model WRF-VPRM; Atmos. Phys. Chem. 12 2441–2458.

    Article  Google Scholar 

  • Kretschmer R, Gerbig C, Karstens U, Biavati G, Vermeulen A, Vogel F, Hammer S and Totsche K U 2014 Impact of optimized mixing heights on simulated regional atmospheric transport of CO2; Atmos. Chem. Phys. 14 7149–7172.

    Article  Google Scholar 

  • Lauvaux T and Davis K J 2014 Planetary boundary layer errors in mesoscale inversions of column-integrated CO2 measurements; J. Geophys. Res. Atmos. 119 490–508. doi: 10.1002/2013JD020175.

    Article  Google Scholar 

  • Law R M et al. 2008 TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002; Global Biogeochem. Cycles 22 GB3009. doi: 10.1029/2007GB003050.

    Article  Google Scholar 

  • Mellor G L and Yamada T 1982 Development of a turbulence closure model for geophysical fluid problem; Rev. Geophys. 20 851–875.

    Article  Google Scholar 

  • Miles N L, Richardson S J, Davis K J, Lauvaux T, Andrews A E, West T O, Bandaru V and Crosson E R 2012 Large amplitude spatial and temporal gradients in atmospheric boundary layer CO2 mole fractions detected with a tower-based network in the U.S. upper Midwest; J. Geophys. Res. 117 G01019. doi: 10.1029/2011JG001781.

    Google Scholar 

  • Moreira D S, Freitas S R, Bonatti J P, Mercado L M, Rosário N M E, Longo K M, Miller J B, Gloor M and Gatti L V 2013 Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model (JULES-CCATT-BRAMS1.0): Applications to numerical weather forecasting and the CO2 budget in South America; Geosci. Model Dev. 6 1243– 1259.

    Article  Google Scholar 

  • Nakazawa T, Ishizawa M, Higuchi K and Travett N B A 1997 Two curve fitting methods applied to CO2 flask data; Environmetrics 8 197–218.

    Article  Google Scholar 

  • Olivier J G J and Berdowski J J M 2001 Global emission sources and sinks; In: The Climate System (eds) Berdowski, J, Guicherit R and Heij B J, Balkema A A, Lisse, Netherlands, pp. 33–78, ISBN: 9058092550.

  • Olsen S C and Randerson J T 2004 Differences between surface and column atmospheric CO2 and implications for carbon cycle research; J. Geophys. Res. 109 D02301. doi: 10.1029/2003JD003968.

    Google Scholar 

  • Palmiéri J, Orr J C, Dutay J-C, Béranger K, Schneider A, Beuvier J and Somot S 2015 Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea; Biogeosci. 12 781–802.

    Article  Google Scholar 

  • Patra P K a., Law R M et al. 2008 TransCom model simulations of hourly atmospheric CO2: Analysis of synoptic-scale variations for the period 2002–2003; Global Biogeochem. Cycles 22 GB4013. doi: 10.1029/2007GB003081.

    Article  Google Scholar 

  • Peylin P, Houweling S, Krol M C, Karstens U, Rödenbeck C, Geels C, Vermeulen A, Badawy B, Aulagnier C, Pregger T, Delage F, Pieterse G, Ciais P and Heimann M 2011 Importance of fossil fuel emission uncertainties over Europe for CO2 modelling: Model intercomparison; Atmos. Chem. Phys. 11 6607–6622. doi: 10.5194/acp-11-6607-2011.

    Article  Google Scholar 

  • Pillai D, Gerbig C, Ahmadov R, Roedenbeck C, Kretschmer R, Koch T, Thompson R, Neininger B and Lavric J V 2011 High-resolution simulations of atmospheric CO2 over complex terrain – representing the Ochsenkopf mountain tall tower; Atmos. Chem. Phys. 11 7445–7464. doi: 10.5194/acp-11-7445-2011.

    Article  Google Scholar 

  • Sarrat C, Noilhan J, Lacarrére P, Ceschia E, Ciais P, Dolman A J, Elbers J A, Gerbig C, Gioli B, Lauvaux T, Miglietta F, Neininger B, Ramonet M, Vellinga O and Bonnefond J M 2009 Mesoscale modelling of the CO2 interactions between the surface and the atmosphere applied to the April 2007 CERES field experiment; Biogeosci. 6 633–646.

    Article  Google Scholar 

  • Smallman T L, Williams M and Moncrieff J B 2014 Can seasonal and interannual variation in landscape CO2 fluxes be detected by atmospheric observation of CO2 concentrations made at tall tower?; Biogeosci. 11 735– 747.

    Article  Google Scholar 

  • Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A and Tercier P. 1998 Mixing height determination for dispersion modelling, Report of Working Group 2; In: Harmonization in the preprocessing of meteorological data for atmospheric dispersion models; COST Action 710, CEC Publication EUR 18195 145–265.

  • Takahashi T, Sutherland S C, Sweeney C a., Poisson A et al. 2002 Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects; Deep Sea Res.: Part II 49 1601–1622. doi: 10.1016/S0967-0645(02)00003-6.

    Article  Google Scholar 

  • Takigawa M, Niwano M, Akimoto H and Takahashi M 2007 Development of a one-way nested global-regional air quality forecasting model; SOLA 3 81–84. doi: 10.2151/sola.2007-021.

    Article  Google Scholar 

  • Tolk L F, Meesters A G C A, Dolman A J and Peters W 2008 Modelling representation errors of atmospheric CO2mixing ratios at a regional scale; Atmos. Chem. Phys. 8 6587–6596.

    Article  Google Scholar 

  • Tolk L F, Dolman A J, Meesters A G C A and Peters W 2011 A comparison of different inverse carbon flux estimation approaches for application on a regional domain; Atmos. Chem. Phys. 11 10349–10365.

    Article  Google Scholar 

  • Vogel F R, Thiruchittampalam B, Theloke J, Kretschmer R, Gerbig C, Hammer S and Levin I 2013 Can we evaluate a fine-grained emission model using high-resolution atmospheric transport modelling and regional fossil fuel CO2 observations?; Tellus B 65 18681.

    Article  Google Scholar 

Download references

Acknowledgements

SB is supported by a research fellowship award by the Council for Scientific and Industrial Research (CSIR), Government of India. This work is partly supported by JSPS/MEXT KAKENHI-A grant number 22241008. We wish to thank the research teams and support staff of the Tsukuba tall tower observation station for their efforts. Initial support from the GOSAT project and Shamil Maksyutov is greatly appreciated. We acknowledge the help rendered by Dr. Sandipan Mukherjee, GBPIHED, India during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SRABANTI BALLAV.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BALLAV, S., PATRA, P.K., SAWA, Y. et al. Simulation of CO 2 concentrations at Tsukuba tall tower using WRF-CO 2 tracer transport model. J Earth Syst Sci 125, 47–64 (2016). https://doi.org/10.1007/s12040-015-0653-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-015-0653-y

Keywords

Navigation