Skip to main content
Log in

Earthquake source characteristics along the arcuate Himalayan belt: Geodynamic implications

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The occurrences of moderate to large magnitude earthquakes and associated subsurface geological processes were critically examined in the backdrop of Indian plate obliquity, stress obliquity, topography, and the late Tertiary regional tectonics for understanding the evolving dynamics and kinematics in the central part of the Himalayas. The higher topographic areas are likely associated with the zones of depressions, and the lower topographic areas are found around the ridges located in the frontal part of the orogen. A positive correlation between plate and stress obliquities is established for this diffuse plate boundary. We propose that the zone of sharp bending of the descending Indian lithosphere is the nodal area of major stress accumulation which is released occasionally in form of earthquakes. The lateral geometry of the Himalayas shows clusters of seismicity at an angle of ∼20 from the centre part of the arc. Such spatial distribution is interpreted in terms of compression across the arc and extension parallel to the arc. This biaxial deformation results in the development of dilational shear fractures, observed along the orogenic belt, at an angle of ∼20 from the principal compressive stress axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Ahnert F 1970 Functional relationships between denudation, relief and uplift in large, mid-latitude drainage basins; Am. J. Sci. 268 243–263.

    Google Scholar 

  • Ansari M A and Khan P K 2014 Occurrences of damaging earthquakes between the Himachal and Darjeeling Himalayas: Tectonic implications; Acta Geophys., doi: 10.2478/s11600-013-0190-5..

  • Armijo R, Tapponnier P, Mercier J L, and Tonglin H 1986 Quaternary extension in southern Tibet: Field observations and tectonic implications; J. Geophys. Res. 91 13,803–13,872.

    Google Scholar 

  • Avouac J P and Burov E B 1996 Erosion as a driving mechanism of intracontinental mountain growth; J. Geophys. Res. 101 17,747–17,769.

    Google Scholar 

  • Banerjee P and Burgmann R 2002 Convergence across the northwest Himalaya from GPS measurements; Geophys. Res. Lett. 29 (13) 31–34.

    Google Scholar 

  • Bapat A, Kulkarni R C, and Guha S K 1983 Catalogue of earthquakes in India and neighborhood – from historical period up to 1979; Indian Society of Earthquake Technology, Roorkee.

  • Baranowski J, Armbruster J, Seeber L, and Molnar P 1984 Focal depths and fault plane solutions of earthquakes and active tectonics of the Himalaya; J. Geophys. Res. 89 6918–6928.

    Google Scholar 

  • Beaumont C, Jamieson R A, Nguyen M H, and Lee B 2001 Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation; Nature 414 738–742.

    Google Scholar 

  • Bendick R and Bilham R 2001 How perfect is the Himalayan Arc? Geol. 29 791–794.

    Google Scholar 

  • Bilham R, Larson K, and Freymueller J 1997 GPS measurements of present-day convergence across the Nepal Himalaya; Nature 386 61–64.

    Google Scholar 

  • Burchfiel B C and Royden L H 1985 North–south extension within the convergent Himalayan region; Geol. 13 679–682.

    Google Scholar 

  • Burg J P, Leyreloup A, Marchand J, and Matte P 1984 Inverted metamorphic zonation and large scale thrusting in the Variscan belt: An example; In: French Massif Central, Variscan tectonics of the North Atlantic region (eds) Hutton D H W and Sanderson D J, Geol. Soc. London Spec. Publ. 14 47–61.

  • Butler R W H, Prior D J, and Knipe R J 1989 Neotectonics of Nanga Parbat Syntaxis, Pakistan, and crustal stacking in the northwest Himalayas; Earth Planet. Sci. Lett. 94 329–343.

    Google Scholar 

  • Cattin R and Avouac J P 2000 Modeling mountain building and the seismic cycle in the Himalaya of Nepal; J. Geophys. Res. 105 389–401.

    Google Scholar 

  • Cattin R, Martelet G, Henry P, Avouac J P, Diament M, and Shakya T R 2001 Gravity anomalies, crustal structure and thermo-mechanical support of the Himalaya of central Nepal; Geophys. J. Int. 147 381–392.

    Google Scholar 

  • Chamoli A, Pandey A K, Dimri V P, and Banerjee P 2011 Crustal configuration of the northwest Himalaya based on modeling of gravity data; Pure Appl. Geophys. 168 827–844.

    Google Scholar 

  • Chandra U 1977 Earthquakes of peninsular India – a seismotectonic study; Bull. Seismol. Soc. Am. 67 1387–1413.

    Google Scholar 

  • Chandra U 1978 Seismicity, earthquake mechanisms and tectonics along the Himalayan mountain range and vicinity; Phys. Earth Planet. Inter. 16 109–131.

    Google Scholar 

  • Chaudhury H M, Srivastava H N, and Rao J S 1974 Seismotectonic investigations in the Himalayas; Him. Geol. 4 481–491.

    Google Scholar 

  • Chiao L Y, Kao H, Lallemand S, and Liu C S 2001 An alternative interpretation for slip vector residuals of subduction interface earthquakes: A case study in the westernmost Ryukyu slab; Tectonophys. 333 123–134.

    Google Scholar 

  • Cloetingh S and Wortel R 1986 Stress in the Indo–Australian plate; Tectonophys. 132 49–67.

    Google Scholar 

  • Conrad C P and Hager B H 1999 Effects of plate bending and fault strength at subduction zones on plate dynamics; J. Geophys. Res. 104 (B8) 17,551–17,571.

    Google Scholar 

  • Copley A, Avouac J P, and Royer J Y 2010 India–Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions; J. Geophys. Res. 115 B03410.

    Google Scholar 

  • Dasgupta A, Srivastava H N, and Basu M S 1982 Source mechanism of earthquakes in Kangra–Chamba region of Himachal Pradesh, India; Bull. Ind. Soc. Earthq. Tech. 19 102–116.

    Google Scholar 

  • Dasgupta S, Mukhopadhyay M, and Nandy D R 1987 Active transverse features in the central portion of the Himalaya; Tectonophys. 136 255–264.

    Google Scholar 

  • Davis D, Suppe J, and Dahlen F A 1983 Mechanics of fold-and-thrust belts and accretionary wedges; J. Geophys. Res. 88 (B2) 1153–1178.

    Google Scholar 

  • De R 2000 A microearthquake survey at the MBT zone: Sikkim Himalaya; J. Geophys. 21 1–8.

    Google Scholar 

  • DeMets C, Gordon R G, Argus D F, and Stein S 1990 Current plate motions; Geophys. J. Int. 101 425–478.

    Google Scholar 

  • DeMets C, Gordon R G, Argus D F, and Stein D 1994 Effect of recent revisions to the geomagnetic reversal time scale and estimates of current plate motions; Geophys. Res. Lett. 21 2191–2194.

    Google Scholar 

  • Deplus C, Diament M, Hébert H, Bertrand G, Dominguez S, Dubois J, Malod J, Patriat P, Pontoise B, and Sibilla J J 1998 Direct evidence of active deformation in the eastern Indian oceanic plate; Geol. 26 131–134.

    Google Scholar 

  • Dewey J F 1988 Extensional collapse of orogens; Tectonics 7 1123–1139.

    Google Scholar 

  • Diament M, Harjono H, Karta K, Deplus C, Dahrin D, Zen Jr M T, Gerard M, Lassal O, Martin A, and Malod J A 1992 Mentawai fault zone off Sumatra: A new key to the geodynamics of western Indonesia; Geol. 20 259–262.

    Google Scholar 

  • Ellis M and Watkinson A J 1987 Orogen-parallel extension and oblique tectonics: The relation between stretching lineations and relative plate motions; Geol. 15 1022– 1026.

    Google Scholar 

  • Ellis S, Fullsack P, and Beaumont C 1995 Oblique convergence of the crust driven by basal forcing: Implications for length-scales of deformation and strain portioning in orogens; Geophys. J. Int. 120 24–44.

    Google Scholar 

  • England P and McKenzie D 1982 A thin viscous sheet model for continental deformation; Geophys. J. Roy. Astron. Soc. 70 295–321.

    Google Scholar 

  • England P and Molnar P 1997 The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults; Geophys. J. Int. 130 551–582.

    Google Scholar 

  • Fielding E, Isacks B, Barazangi M, and Duncan C 1994 How flat is Tibet? Geol. 22 (2) 163–167.

    Google Scholar 

  • Finlayson D P, Montgomery D R, and Hallet B 2002 Spatial coincidence of rapid inferred erosion with young metamorphic massifs in the Himalayas; Geol. 30 219–222.

    Google Scholar 

  • Fitch T J 1972 Plate convergence, transcurrent faults and internal deformation adjacent to southeast Asia and the western Pacific; J. Geophys. Res. 77 4432–4460.

    Google Scholar 

  • Gahalaut V K and Kundu B 2012 Possible influence of subduction ridges on the Himalayan arc and on the ruptures of great and major Himalayan earthquakes; Gondwana Res. 21 1080–1088.

    Google Scholar 

  • Gansser A 1964 Geology of the Himalaya; Intersci. Publ. London, pp. 1–273.

  • Gapais D, Pecher A, Gilbert E, and Ballevre M 1992 Syn-convergence spreading of the main central sheet, Ladakh Himalaya; Tectonics 11 1045–1056.

    Google Scholar 

  • Garzanti E, Critelli S, and Ingersoll R 1996 Paleogeographic and paleotectonic evolution of the Himalayan Range as reflected by detrital modes of Tertiary sandstones and modern sands (Indus transect, India and Pakistan); Geol. Soc. Am. Bull. 108 631–642.

    Google Scholar 

  • Godin L, Grujic D, Law R D, and Searle M P 2006 Channel flow, ductile extrusion and exhumation in continental collision zones: An introduction; In: Channel flow, ductile extrusion and exhumation in continental collision zones (eds) Searle R D and Law M P, Geol. Soc. London Spec. Publ. 268 1–23.

  • Gordon R G, DeMets C, and Argus D F 1990 Kinematic constraints on distributed lithospheric deformation in the equatorial Indian Ocean from present motion between the Australian and Indian plates; Tectonics 9 409–422, doi: 10.1029/TC009i003p00409.

    Google Scholar 

  • Guillot S, Cosca M, Allemand P, and Le Fort P 1999 Constraining metamorphism and geochronological evolution along the Himalayan belt; In: Himalayan Tibet: Mountain roots to mountain tops (eds) Macfarlane A, Sorkhabi R B and Quade J, Geol. Soc. Am. Spec. Paper 328 117–128.

  • Hall R 1997 Cenozoic plate tectonic reconstructions of SE Asia; In: Petroleum geology of southeast Asia (eds) Fraser A J, Matthews S J and Murphy R W, Geol. Soc. London Spec. Publ. 126 11–23.

  • Haq S S B and Davis D M 1997 Oblique convergence and the lobate mountain belts of western Pakistan; Geol. 25 23–26.

    Google Scholar 

  • Harris N 2007 Channel flow and the Himalayan–Tibetan orogen: A critical review; J. Geol. Soc. London 164 511–523, doi: 10.1144/0016-76492006-133.

    Google Scholar 

  • Harrison T M, Copeland P, Kidd W S F, and Yin A 1992 Raising Tibet; Sci. 255 1663–1670, doi: 10.1126/science.255.5052.1663.

    Google Scholar 

  • Hazarika P, Kumar M R, Srijayanthi G, Raju P S, Rao P N, and Srinagesh D 2010 Transverse tectonics in the Sikkim Himalaya: Evidence from seismicity and focal-mechanism data; Bull. Seismol. Soc. Am. 100 (4) 1816–1822, doi: 10.1785/0120090339.

    Google Scholar 

  • Hintersberger E, Thiede R C, Strecker M R, and Hacker B R 2010 East–west extension in the NW Indian Himalaya ; Geol. Soc. Am. Bull. 122 1499–1515, doi: 10.1130/B26589.1.

    Google Scholar 

  • Hodges K V 2000 Tectonics of the Himalayan and southern Tibet from two perspective; Geol. Soc. Am. Bull. 112 324–350.

    Google Scholar 

  • Hodges K V, Parrish R, Housh T, Lux D, Burchfiel B C, Royden L, and Chen Z 1992 Simultaneous Miocene extension and shortening in the Himalayan orogen; Sci. 258 1466–1470.

    Google Scholar 

  • Hodges K V, Parrish R R, and Searle M P 1996 Tectonic evolution of the central Annapurna Range, Nepalese Himalaya; Tectonics 15 (6) 1264–1291, doi: 10.1029/96TC01791.

    Google Scholar 

  • Houseman G and England P 1993 Crustal thickening versus lateral expulsion in the India–Asia continental collision; J. Geophys. Res. 98 12,233–12,249.

    Google Scholar 

  • Hovius N 2000 Macroscale process systems of mountain belt erosion; In: Geomorphology and Global Tectonics (ed.) Summerfield M A (Chichester: John Wiley and Sons Ltd.), pp. 77–105.

  • Hubbard M S and Harrison T M 1989 40Ar/ 39Ar age constraints on deformation and metamorphism in the Main Central Thrust zone and in Tibetan Slab, eastern Nepal Himalaya; Tectonics 8 865–880.

    Google Scholar 

  • Jackson M and Bilham R 1994 Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet; J. Geophys. Res. 99 (B7) 13897–13912.

    Google Scholar 

  • Jarrard R D 1986 Relations among subduction parameters; Rev. Geophys. 24 217–284.

    Google Scholar 

  • Kao H, Shen S J, and Ma K F 1998 Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc-Taiwan region; J. Geophys. Res. 103 7211–7229.

    Google Scholar 

  • Kayal J R 2001 Microearthquake activity in some parts of the Himalaya and the tectonic model; Tectonophys. 339 331–351.

    Google Scholar 

  • Kelleher J and McCann W 1976 Buoyant zones, great earthquakes, and unstable boundaries of subduction; J. Geophys. Res. 81 4885–4896.

    Google Scholar 

  • Khan P K 2004 Recent seismicity trend in India and adjoining regions. J. Ind. Soc. Earthq. Tech., pp. 10–14.

  • Khan P K 2005 Variation in dip-angle of the Indian plate subducting beneath the Burma plate and its tectonic implications; Int. Geosci. J. 9 227–234.

    Google Scholar 

  • Khan P K and Chakraborty P P 2005 Two-phase opening of Andaman Sea: A new seismotectonic insight; Earth Planet Sci. Lett. 229 259–271.

    Google Scholar 

  • Khan P K 2007 Lithospheric deformation under pre- and post-seismic stress fields along the Nicobar–Sumatra subduction margin during 2004 Sumatra mega-event and its tectonic implications; Gondwana Res. 12 468–475.

    Google Scholar 

  • Khan P K 2011 Role of unbalanced slab resistive force in the 2004 off Sumatra megaearthquake (M w>9.0) event; Int. J. Earth Sci. 100 1749–1758, doi: 10.1007/s00531-010-0576-4.

    Google Scholar 

  • Khan P K and Chakraborty P P 2009 Plate geometry, plate rheology, and their relation to shallow-focus mega-thrust seismicity with special reference to 26 December 2004 Sumatra event; J. Asian Earth Sci. 34 480–491.

    Google Scholar 

  • Khan P K, Mohanty S, and Mohanty M 2010 Geodynamic implications for the 8 October 2005 North Pakistan earthquake; Surv. Geophys. 31 85–106, doi: 10.1007/s10712-009-9083-1.

    Google Scholar 

  • Khan P K, Chakraborty P P, Tarafder G, and Mohanty S 2012 Testing the intraplate origin of mega-earthquakes at subduction margins; Geosci. Front. 3 473–481, doi: 10.1016/j.gsf.2011.11.012.

    Google Scholar 

  • Kohlstedt D L, Keppler H, and Rubie D C 1996 Solubility of water in the α, β and γ phases of (Mg, Fe) 2SiO 4; Contrib. Mineral. Petrol. 123 345–357.

    Google Scholar 

  • Koons P O 1989 The topographic evolution of collision mountain belts: A numerical look in southern Alps, New Zealand; Am. J. Sci. 289 1041–1069.

    Google Scholar 

  • Larson K, Bürgmann R, Bilham R, and Freymueller J T 1999 Kinematics of the India–Eurasia collision zone from GPS measurement; J. Geophys. Res. 104 1077–1093.

    Google Scholar 

  • Lavé J and Avouac J P 2001 Fluvial incision and tectonic uplift across the Himalayas of central Nepal; J. Geophys. Res. 106 (B11) 26,561–26,591.

    Google Scholar 

  • Leg 116 Shipboard Scientific Party 1987 Collision in the Indian Ocean; Nature 330 519–521.

    Google Scholar 

  • Levchenko O V 1989 Tectonic aspects of intraplate seismicity in the northeastern Indian Ocean; Tectonophys. 170 125–139.

    Google Scholar 

  • Liu X, McNally K C, and Shen Z K 1995 Evidence for a role of the downgoing slab in earthquake slip partitioning at oblique subduction zones; J. Geophys. Res. 100 (B8) 15,351–15,372.

    Google Scholar 

  • Lu C Y and Malavieille J 1994 Oblique convergence, indentation and rotation tectonics in the Taiwan mountain belt: Insight from experimental modeling; Earth Planet. Sci. Lett. 121 477–494.

    Google Scholar 

  • Lyon-Caen H and Molnar P 1983 Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere; J. Geophys. Res. 88 8171–8192.

    Google Scholar 

  • Malod J A and Kemal B M 1996 The Sumatra margin: Oblique subduction and lateral displacement of the accretionary prism; In: Tectonic evolution of southeast Asia (eds) Hall R and Blundell D, Geol. Soc. London Spec. Publ. 106 19–28, 10.1144/GSL.SP.1996.106.01.03.

  • McCaffrey R 1991 Slip vectors and stretching of the Sumatran forearc; Geol. 19 (9) 881–884.

    Google Scholar 

  • McCaffrey R 1992 Oblique plate convergence, slip vectors, and forearc deformation; J. Geophys. Res. 97 (B6) 8905–8915.

    Google Scholar 

  • McCaffrey R and Nabelek J 1998 Role of oblique convergence in the active deformation of the Himalayas and southern Tibet; Geol. 26 691–694.

    Google Scholar 

  • McCaffrey R, Zwick P C, Bock Y, Prawirodirdjo L, Genrich J F, Stevens C W, Puntodewo S O, and Subarya C 2000 Strain partitioning during oblique plate convergence in northern Sumatra: Geodetic and seismologic constraints and numerical modeling; J. Geophys. Res. 105 28,363–28,376.

    Google Scholar 

  • McKenzie D and Sclater J G 1971 The evolution of the Indian Ocean since the late Cretaceous; Geophys. J. Roy. Astron. Soc. 25 437–528.

    Google Scholar 

  • Mohanty S 2011 Crustal stress and strain patterns in the Indian plate interior: Implications for the deformation behaviour of a stable continent and its seismicity; Terra Nova 23 407–415, doi: 10.1111/j.1365-3121.2011.01027.x.

    Google Scholar 

  • Molnar P 1990 A review of the seismicity and the rates of active underthrusting and deformation at the Himalaya; J. Him. Geol. 1 (2) 131–154.

    Google Scholar 

  • Molnar P and Tapponnier P 1975 Cenozoic tectonics of Asia: Effects of a continental collision; Sci. 189 419–426.

    Google Scholar 

  • Molnar P and Tapponnier P 1977 The relation of the tectonics of eastern China to the India–Eurasia collision: An application of slip line field theory to large-scale continental tectonics; Geol. 5 212–216.

    Google Scholar 

  • Molnar P and Tapponnier P 1978 Active tectonics of Tibet; J. Geophys. Res. 83 5361–5369.

    Google Scholar 

  • Molnar P and Chen W P 1982 Seismicity and mountain building; In: Mountain Building Processes (eds) Briegel U and Hsu K J (New York: Academic Press), pp. 41–57.

  • Molnar P and Lyon-Caen H 1989 Fault plane solutions of earthquakes and active tectonics of the Tibetan plateau and its margin; Geophys. J. Int. 99 123– 153.

    Google Scholar 

  • Molnar P and England P 1990 Temperatures, heat flux, and frictional stress near major thrust faults; J. Geophys. Res. 95 4833–4856.

    Google Scholar 

  • Molnar P, Fitch T J and Wu F T 1973 Fault plane solutions of shallow earthquakes and contemporary tectonics of Asia; Earth Planet. Sci. Lett. 19 (2) 101–112.

    Google Scholar 

  • Molnar P, England P, and Martinod J 1993 Mantle dynamics, the uplift of the Tibetan Plateau, and the Indian monsoon; Rev. Geophys. 31 357–396.

    Google Scholar 

  • Monsalve G, Sheehan A, Schulte-Pelkum V, Rajaure S, Pandey M R, and Wu F 2006 Seismicity and one dimensional velocity structure of the Himalayan collision zone: Earthquakes in the crust and upper mantle; J. Geophys. Res. 111(B10301), doi: 10.1029/2005JB004062.

  • Ni J and Barazangi M 1984 Seismotectonics of the Himalayan collision zone: Geometry of the underthrusting Indian Plate beneath the Himalaya; J. Geophys. Res. 89 1147–1163.

    Google Scholar 

  • Owens T J and Zandt G 1997 The implications of crustal property variations on models of Tibetan Plateau evolution; Nature 387 37–43.

    Google Scholar 

  • Patriat P and Achache J 1984 India–Eurasia collision chronology has implications for crustal shortening and driving mechanism for plates; Nature 311 615–621.

    Google Scholar 

  • Peltzer G and Tapponnier P 1988 Formation and evolution of strike-slip faults, rifts, and basins during the India–Asia collision: An experimental approach; J. Geophys. Res. 93 15,085–15,117.

    Google Scholar 

  • Pinet P and Souriau M 1988 Continental erosion and large-scale relief; Tectonics 7 563–582.

    Google Scholar 

  • Raju K, Ramprasad T, Rao P, Ramalingeswara Rao B, and Varghese J 2004 New insights into the tectonic evolution of the Andaman Basin, northeast Indian Ocean; Earth Planet. Sci. Lett. 221 145–167.

    Google Scholar 

  • Rao M B R 1973 The subsurface geology of the Indo-Gangetic plains; J. Geol. Soc. India 14 217–242.

    Google Scholar 

  • Rastogi B K, Singh J, and Verma R K 1973 Earthquake mechanisms and tectonics of the Assam–Burma region; Tectonophys. 18 355–366.

    Google Scholar 

  • Rastogi B K 1974 Earthquake mechanism and plate tectonics in Himalayan region; Tectonophys. 21 47–56.

    Google Scholar 

  • Rastogi B K 1976 Source mechanism studies and contemporary tectonics in Himalaya and nearby regions; Bull. Int. Inst. Seismol. 14 99–134.

    Google Scholar 

  • Richardson R M 1992 Ridge forces, absolute plate motions, and the intraplate stress field; J. Geophys. Res. 97 11,739–11,749.

    Google Scholar 

  • Sandiford M, Coblentz D, and Richardson R M 1995 Focusing ridge-torques during continental collision in the Indo–Australian plate; Geol. 23 653–656.

    Google Scholar 

  • Sastri V V, Bhandari L L, Raju A T R, and Datta A K 1971 Tectonics framework and subsurface stratigraphy of the Ganga basin; J. Geol. Soc. India 12 232–233.

    Google Scholar 

  • Schluter H U, Gaedicke C, Roeser H A, Schreckenberger B, Meyer H, Reichert C, Djajadihardja Y, and Prexl A 2002 Tectonic features of the southern Sumatra–western Java forearc of Indonesia; Tectonics 21 (11) 1–15.

    Google Scholar 

  • Sclater J G and Fisher R L 1974 The evolution of the East Central Indian Ocean with emphasis on the tectonic setting of the ninety East Ridge; Geol. Soc. Am. Bull. 85 693–702.

    Google Scholar 

  • Searle M P 1991 Geology and tectonics of the Karakoram mountains; Geol. Mag. 129 (2) 251–254.

    Google Scholar 

  • Searle M P and Rex A J 1989 Thermal model for the Zanskar Himalaya; J. Metamor. Geol. 7 127–134, doi: 10.1111/j.1525-1314.1989.tb00579.x.

    Google Scholar 

  • Seeber L and Pêcher A 1998 Strain partitioning along the Himalayan arc and the Nanga Parbat Antiform; Geol. 26 791–794.

    Google Scholar 

  • Seeber L, Armbruster J, and Quittmeyer R 1981 Seismicity and continental subduction in the Himalayan arc; In: Zagros, Hindu Kush, Himalaya: Geodynamic evolution (eds) H K Gupta and F M Delany, Am. Geophys. Uni. Geod. Ser. 3 215–242.

  • Singh D D and Gupta H K 1980 Source dynamics of two great earthquakes of Indian subcontinent – the Bihan Jan. 15, 1934 and Quetta earthquake of May 30, 1935; Bull. Seismol. Soc. Am. 70 757–773.

    Google Scholar 

  • Sinha S and Mohanty S 2012 Spatial variation of crustal strain in the Kachchh region, India: Implication on the Bhuj earthquake of 2001; J. Geod. 61 1–11, doi: 10.1016/j.jog.2012.07.003.

    Google Scholar 

  • Sinha S, Khan P K, and Mohanty S P 2013 Incidences of moderate to large intraplate earthquakes in peninsular India with special reference to 2001 Mw 7.3 Bhuj event; Proceedings of the National Conference on Recent Advances in Mathematics and its Applications, I.S.M. Dhanbad, pp. 255–271.

  • Soofi M A and King S D 2002 Oblique convergence between India and Eurasia; J. Geophys. Res. 107(B5), doi: 10.1029/2001JB000636.

  • Stern R J 2002 Subduction zones; Rev. Geophys. 40 31–38.

    Google Scholar 

  • Summerfield M A and Hulton N J 1994 Natural controls of fluvial denudation rates in major world drainage basin; J. Geophys. Res. 99 (7) 13,871–13,883.

    Google Scholar 

  • Takada Y and Matsu’ura M 2004 A unified interpretation of vertical movement in Himalaya and horizontal deformation in Tibet on the basis of elastic and viscoelastic dislocation theory; Tectonophys. 383 105–131.

    Google Scholar 

  • Tandon A N 1972 Anantnag earthquakes (February–April 1967); Ind. J. Meteor. Geophys. 23 491–502.

    Google Scholar 

  • Tandon A N and Srivastava H N 1975 Focal mechanisms of some recent Himalayan earthquakes and regional plate tectonics; Bull. Seismol. Soc. Am. 65 963–969.

    Google Scholar 

  • Tapponnier P, Zhiqin X, Roger F, Meyer B, Arnaud N, Wittlinger G, and Jingsui Y 2001 Oblique stepwise riseand growth of the Tibetan plateau; Sci. 294 (5547) 1671–1677.

    Google Scholar 

  • Tiwari V M, Vyghreswara Rao M B S, Mishra D C, and Singh B 2006 Crustal structure across Sikkim, NE Himalaya from new gravity and magnetic data; Earth Planet. Sci. Lett. 247 61–69.

    Google Scholar 

  • Turcotte D L and Schubert G 1982 Geodynamics applications of continuum physics to geological problems; Wiley, New York, 450p.

    Google Scholar 

  • Valdiya K S 1976 Himalaya transverse faults and their parallelism with subsurface structures of north Indian planes; Tectonophys. 32 353–386.

    Google Scholar 

  • Valdiya K S 1980 Geology of Kumaun Lesser Himalaya; Him. Geol., 291p.

  • Verma R K and Kumar G V R K 1987 Seismicity and the nature of plate movement along the Himalayan arc, northeast India and Arakan-Yoma: A review; Tectonophys. 134 153–175.

    Google Scholar 

  • Vilotte J P, Madariaga R, Daignières M, and Zienkiewicz O C 1986 Numerical study of continental collision: Influence of buoyancy forces and an initial stiff inclusion; Geophys. J. Roy. Astron. Soc. 84 279–310.

    Google Scholar 

  • Weissel J K, Anderson R N, and Geller C A 1980 Deformation of the Indo-Australian plate; Nature 287 284–291, doi: 10.1038/287284a0.

    Google Scholar 

  • Whipple K X and Meade B J 2006 Orogen response to changes in climatic and tectonic forcing; Earth Planet. Sci. Lett. 243 218–228.

    Google Scholar 

  • Willett S, Beaumont C, and Fullsack P 1993 Mechanical model for the tectonics of doubly vergent compressional orogens; Geol. 21 371–374.

    Google Scholar 

  • Wobus C, Heimsath A, Whipple K, and Hodges K 2005 Active out-of-sequence thrust faulting in the central Nepalese Himalaya; Nature 434, doi: 10.1038/nature03454.

  • Yin A 2006 Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation; Earth Sci. Rev. 76 1–131.

    Google Scholar 

  • Yin A and Harrison M 2000 Geologic evolution of the Himalayan–Tibetan orogen; Ann. Rev. Earth Planet. Sci. 28 211–280.

    Google Scholar 

Download references

Acknowledgement

Authors are grateful to the Director, Indian School of Mines, Dhanbad for the financial support to carry out the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prosanta Kumar Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, P.K., Ansari, M.A. & Mohanty, S. Earthquake source characteristics along the arcuate Himalayan belt: Geodynamic implications. J Earth Syst Sci 123, 1013–1030 (2014). https://doi.org/10.1007/s12040-014-0456-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-014-0456-6

Keywords

Navigation