Skip to main content
Log in

Contribution of some ozone depleting substances (ODS) and greenhouse gases (GHGs) on total column ozone growth at Srinagar (34°N, 74.8°E), India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

A critical analysis has been made on the contribution of CFC-11, CFC-12, CFC-113, CH3Cl, CH3Br, CCl4, CH3CCl3, HCFCs, halons, WMO (World Meteorological Organization) minor constituents, CH4, N2O and water vapour to the variation of total column ozone (TCO) concentration at the station in Srinagar (34°N, 74.8°E), India from 1992 to 2003. With the implementation of Montreal Protocol, though the concentrations of CFC-11, CFC-113, CH3Cl, CH3Br, CCl4 and CH3CCl3 had decreased, the concentrations of CFC-12, HCFCs, halons, WMO minor constituents, CH4, N2O and water vapour had increased, as a result of which TCO had risen from 1992 to 2003 at the above station. The nature of yearly variations of concentrations of the above ozone depleting substances and GHGs as well as ozone has been presented. Possible explanations for build-up of TCO have also been offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Akimoto H 2003 Global air quality and pollution; Science 302 1716–1719.

    Article  Google Scholar 

  • Angell J K 2000 Global, hemispheric and zonal temperature deviations derived from radiosonde records, in trends online: A compendium of data on global change, Carbon dioxide Information Analysis Centre, Oak Ridge National Labopratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA.

  • Baldwin H et al. 2001 The quasi-biennial oscillation; Rev. Geophys. 39 179–229.

    Article  Google Scholar 

  • Bekki S, Toumi R, Pyle J A and Jones A E 1997 Future aircraft and global ozone; Nature 354 193–194.

    Article  Google Scholar 

  • Blake D R and Rowland F S 1988 Continuing world-wide increase in tropospheric methane; Science 239 1129–1131.

    Article  Google Scholar 

  • Blake D R et al. 1982 Global increase in atmospheric methane concentrations between 1978 and 1980; Geophys. Res. Lett. 9 477–480.

    Article  Google Scholar 

  • Bojkov R D 1992 Scientific assessment of ozone depletion; WMO Bull. 41 171.

    Google Scholar 

  • Brook E J, Sowers T and Orchedo J 1996 Rapid variations in atmospheric methane concentration during the past 110,000 years; Science 273 1087–1091.

    Article  Google Scholar 

  • Daniel J S, Velders G J M, Douglass A R, Forster P M D, Haughustaine D A, Isasksen I S A, Kuijpers L J M, McCulloch A and Wallington T J 2007 Scientific Assessment of Ozone Depletion: Global Ozone Research and Monitoring Project – Report # 50, World Meteorological Organization, Geneva.

  • Dlugokencky E J, Masarie K A, Lang P M and Tans PP 1998 Continuing decline in the growth rate of atmospheric methane burden; Nature 393 447–450.

    Article  Google Scholar 

  • Dvortsov V L and Solomon S 2001 Response of the stratospheric temperatures and ozone, past and future increases in stratospheric humidity; J. Geophys. Res. 106(D7) 7505–7514.

    Article  Google Scholar 

  • EPA 2007 Recent Climate Change: Atmosphere Changes; Climate Change Science Program. United States Environmental Protection Agency. http://www.epa.gov/climatechange/science/recentac.html.

  • Etheridge D M, Pearman G I and Fraser P J 1992 Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice-core; Tellus 44B 282–294.

    Google Scholar 

  • Farman J C, Gardiner B G and Shankline J D 1985 Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction; Nature 315 207–210.

    Article  Google Scholar 

  • Ghosh S N and Midya S K 1994 Atmospheric ozone, its depletion and Antarctic ozone hole; Indian J. Phys. 68B 473–493.

    Google Scholar 

  • Harfoot M B, Beerling D J, Lomax B H and Pyle J A 2007 A two-dimensional atmospheric chemistry modeling investigation of Earth’s phenerozoic O3 and near-surface ultraviolet radiation history; J. Geophys. Res. 112 D07308, doi: 10.1029/2006JD007302.

    Article  Google Scholar 

  • IPCC 1995 Climate change 1995 (eds) Houghton J T, Filho, Callandar B A, Harris N, Kattenbarg A and Morkel K (Cambridge, UK: Cambridge University Press).

  • IPCC 2001 Summary for policymakers; Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, IPCC (http://www.grida.no/climate/ipcc_tar/wg1/pdf/WG1_TAR-FRONT.pdf).

  • Ishijima K, Nakazawa T, Sugawara S, Aoki S and Sacki T 2001 Concentration variations of tropospheric nitrous oxide over Japan; Geophys. Res. Lett. 28(1) 171–174.

    Article  Google Scholar 

  • Jana P K and Nandi S C 2005 Depletion of ozone and its effect on night airglow intensity of Na 5893 Å at New Delhi (29°N, 77°E) and Halley Bay (76°S, 27°W); Indian J. Phys. 79(11) 1313–1317.

    Google Scholar 

  • Jana P K and Nandi S C 2006a Latitudinal variation of ozone in India; Indian J. Phys. 80(12) 1175–1178.

    Google Scholar 

  • Jana P K and Nandi S C 2006b Depletion of ozone and its effect on night airglow intensity of Na 5893 Å at Trivandrum (8.25°N, 76.9°E) and Halley Bay (76°S, 27°W); Mausam 57 350–354.

    Google Scholar 

  • Jana P K and Nandi S C 2006c Ozone decline and its effect on night airglow intensity of Na 5893 Å at Dumdum (22.5°N, 88.5°E) and Halley Bay (76°S, 27°W); J. Earth Sys. Sci. 115 607–613.

    Article  Google Scholar 

  • Jana P K and Saha I 2011 Correlation of greenhouse molecules with global and surface temperature and its effect on environment; Indian J. Phys. 85(5) 667–682.

    Article  Google Scholar 

  • Jana P K, Midya S K and De U K 2001 Short-term ozone trend in India; Indian J. Radio Space Phys. 30 176–180.

    Google Scholar 

  • Jana P K, Sarkar D and Das P 2008 Effect of long-term ozone trend on night airglow intensity of Li 6708 Å at Dumdum (22.5°N, 88.5°E) and Halley Bay (76°S, 27°W); Indian J. Radio Space Phys. 37 326–332.

    Google Scholar 

  • Jana P K, Saha I, Das P, Sarkar D and Midya S K 2010 Long- term ozone trend and its effect on night airglow intensity of Li 6708 Å at Ahmedabad (23°N, 72.5°E) and Halley Bay (76°S, 27°W); Indian J Phys. 84(1) 1–13.

    Article  Google Scholar 

  • Jana P K, Saha I and Mukhopadhyay S 2011 Long-term ozone decline and its effect on night airglow intensity of Li 6708 Å at Varanasi (25°N, 83°E) and Halley Bay (76°S, 27°W); J. Earth Syst. Sci. 120(2) 291–300.

    Article  Google Scholar 

  • Jansen E, Overpeck J, Briffa K R, Duplessy J C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B and Peltier W R 2007 Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC Fourth Assessment Report (Cambridge and New York: Cambridge University Press), pp. 466–478.

    Google Scholar 

  • Karl T R and Trenberth K E 2003 Modern global climate change; Science 302 1719–1723.

    Article  Google Scholar 

  • Karlsdottir S and Isaksen I S A 2000 Changing methane life time: Possible cause for reduced growth; Geophys. Res. Lett. 27 93–96.

    Article  Google Scholar 

  • Khalil M A K and Rasmussen R A 1993 Decreasing trend of methane: Unpredictability of future concentrations; Chemosphere 26 803–814.

    Article  Google Scholar 

  • Khalil M A K, Rasmussen R A and Gunawardena R 1993 Atmospheric methyl bromide: trends and global mass balance; J. Geophys. Res. 98 2887–2896.

    Article  Google Scholar 

  • Kiehl J T and Trenberth K E 1997 Earth’s annual global mean energy budget; Bull. Am. Meteorol. Soc. 78(2) 197–208.

    Article  Google Scholar 

  • Kroeze C, Mosier A and Bouwman L 1999 Closing the global N2O budget, a retrospective analysis 1500–1994; Global Biogeochem. Cycles 13 1–8.

    Article  Google Scholar 

  • Kunhikrishnan T, Lawrence M G, von Kuhlmann R, Weivig M O, Asman W A H, Richter A and Burrows J P 2006 Regional non emission strength for the Indian sub-continent and the impact of countries on regional O3 chemistry; J. Geophys. Res. 111 D15301, doi: 10.1029/2005JD006036.

    Article  Google Scholar 

  • Machida T, Nakazawa T, Fujii Y, Aoki S and Watnabe O 1995 Increase in the atmospheric nitrogen oxide concentration during the last 250 years; Geophys. Res. Lett. 22 2921–2924.

    Article  Google Scholar 

  • Mano S and Andreae M O 1994 Emission of methyl bromide from biomass burning; Science 263 1255–1257.

    Article  Google Scholar 

  • McElroy M B, Salawitch R J, Wofsy S C and Logan J S 1986 Reduction of Antarctic ozone due to synergistic interactions of chlorine and bromine; Nature 321 759–762.

    Article  Google Scholar 

  • Meier W N and Stroeve J 2008 Comparison of sea ice extent ice edge location estimated from passive microwave and enhanced resolution scatterometer data; Ann. Glaciol. 48 65–70, doi: 10.3189/172756408784700743.

    Article  Google Scholar 

  • Midya S K and Jana P K 2002 Atmospheric ozone depletion and its effect on environment; Indian J. Phys. 76B 107–138.

    Google Scholar 

  • Midya S K, Jana P K and De U K 1999 Antarctic ozone depletion and its correlation with solar flare numbers; Indian J. Phys. 73B 605–613.

    Google Scholar 

  • Molina L T and Molina M J 1987 Production of Cl2O2 from the self-reduction of the ClO radical; J Phys. Chem. 91 433–436.

    Article  Google Scholar 

  • Molina M J and Rowland F S 1974 Stratospheric sink of chlorofluoromethanes: Chlorine atom catalysed sink of ozone; Nature 249 810–812.

    Article  Google Scholar 

  • Nevisen C and Holland E 1997 A re-examination of the impact of anthropogenically fixed nitrogen on atmospheric N2O and the stratospheric O3 layer; J. Geophys. Res. 102 25,519–25,536.

    Google Scholar 

  • Pearson P N and Palmer M R 2000 Atmospheric carbon dioxide concentrations over the past 60 million years; Nature 406 695–699.

    Article  Google Scholar 

  • Petit J R, Jouzel J, Raymand D, Baskov N I, Barmola J M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov V M, Legrand M, Lipenkov V Y, Lorices C, Pepin L, Ritz C, Saltzman E and Stievenard M 1999 Climate and atmospheric history of the past 420,000 years fron the Vostok ice core, Antarctica; Nature 399 429–436.

    Article  Google Scholar 

  • Philipona R, Behrens K and Ruckstuhl C 2009 How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s; Geophys. Res. Lett. 36 L02806, doi: 10.1029/2008GL036350.

    Article  Google Scholar 

  • Portmann R W and Solomon S 2007 Indirect radiative forcing of the ozone layer during the 21st century; Geophys. Res. Lett. 34 L02813, doi: 10.1029/2006GL028252.

    Article  Google Scholar 

  • Prinn R G, Weiss R F, Fraser P J and Simonds P G 2000 A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE; J. Geophys. Res. 103 17,751–17,792.

    Google Scholar 

  • Ramanathan V, Cicerone R J, Sing H B and Kiehl J T 1985 Trace gas trends and their potential role in climate change; J. Geophys. Res. 90 5547–5566.

    Article  Google Scholar 

  • Randeniya L K, Vohralik P F and Plumb I C 2002 Stratospheric ozone depletion at northern mid-latitude in 21st century: The importance of future concentrations of green house gases nitrous oxide and methane; Geophys. Res. Lett. 29(4), doi: 10.1029/2001GL014295.

  • Rasmussen R A and Khalil M A K 1984 Atmospheric methane in recent and ancient atmospheres: Concentrations, trends and inter hemispheric gradient; J. Geophys. Res. 89 11,599–11,605.

    Article  Google Scholar 

  • Ravishankara A R et al. 2008 The US Climate Change Science Programme Executive Summary on “Trends in emissions of ozone depleting substances, ozone layer recovery and implications for ultraviolet radiation exposure”, pp. 15–22.

  • Rodhe H 1990 A comparison of the contribution of various gases to the greenhouse effect; Science 248 1217–1219.

    Article  Google Scholar 

  • Rowland F S 1989 Chlorofluorocarbons and the depletion of stratospheric ozone; Am. Sci. 77 36–45.

    Google Scholar 

  • Rowland F S 1991 Stratospheric ozone depletion; Ann. Rev. Phys. Chem. 42 731–741.

    Article  Google Scholar 

  • Russell R 2007 The Greenhouse Effect & Greenhouse Gases; University Corporation for Atmospheric Research Windows to the Universe (http://www.windows.ucar.edu/tour/link= /earth/climate/greenhouse_effect_gases.html&edu=high).

  • Satheesh S K, Dutt C B S, Srinivasan J and Rao U R 2007 Atmospheric warming due to dust absorption over Afro-Asian region; Geophys. Res. Lett. 34 L04805, doi: 10.1029/2006GL028623.

    Article  Google Scholar 

  • Schmidt G 2005 Water vapour: feedback or forcing? Real Climate (2005) (http://www.realclimate.org/index.php?p=142).

  • Scinocca J F, Reader M C, Plummer D A, Sigmond M, Kushner P J, Shepherd T G and Ravishankara A R 2009 Impact of sudden Arctic sea-ice loss on stratospheric polar ozone recovery; Geophys. Res. Lett. 36 L24701, doi: 10.1029/2009GL041239.

    Article  Google Scholar 

  • Seinfeld J H 1999 In reactive hydrocarbons in the atmosphere (ed.) Hewitt C N (San Diego: Academic Press), pp. 293–319.

  • Shorter J H, Kolb C E, Krill P M, Kerwin R A, Talbot R W, Hines M E and Harris R C 1995 Rapid degradation of atmospheric methyl bromide in soils; Nature 377 717–719.

    Article  Google Scholar 

  • Siegenthaler U, Stocker T F, Monnin E, Luthi D, Schwander J, Stauffer B, Raynaud D, Barnola J-M, Fisher H, Masson-Detmotte V and Jouzel J 2005 Science 310 1313–1317.

    Article  Google Scholar 

  • Sihra K, Hurley D M, Shine K P and Wallington T J 2001 Updated radiative forcing estimates of 65 halocarbons and nonmethane hydrocarbons; J. Geophys. Res. 106 20,493–20,505.

    Article  Google Scholar 

  • Simpson I J, Blake D R, Rowland F S and Chen T Y 2002 Implications of the recent fluctuations in the growth rate of tropospheric methane; Geophys. Res. Lett. 29(10) 1479, doi: 10.1029/2001GL014521.

    Article  Google Scholar 

  • Solomon S 1990 Progress towards a quantitative understanding of Antarctic ozone depletion; Nature 347 347–354.

    Article  Google Scholar 

  • Solomon S, Garcia R R, Rowland F S and Wuebbles D J 1986 On the depletion of Antarctic ozone; Nature 321 755–758.

    Article  Google Scholar 

  • Solomon S, Portmann R W, Garcia R R, Thompson L W, Poole L R and McCormick M P 1996 The role of aerosol variations in the anthropogenic ozone depletion at northern mid-latitude; J. Geophys. Res. 101 6713–6727.

    Article  Google Scholar 

  • Spahni R, Chappellaz J, Stocker T F, Loulergue L, Hausammann G, Kawamura K, Fluckiger J, Schwander J, Raynaud D, Masson-Detmotte V and Jouzel J 2005 Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores; Science 310 1317–1321.

    Article  Google Scholar 

  • Trenberth K E, Jones P D, Ambenje P, Bojraiu R, Easterling D, Tank A K, Parkar D, Rahimzadeh, Renwick J A, Rustieucci M, Soden B and Zhai 2007 Climate Change 2007: Chapter 3: Observations: Surface and atmospheric climate change, IPCC Fourth Assessment Report (Cambridge and New York: Cambridge University Press), p. 244.

  • Treut H Le, Somerville R, Cubash U, Ding Y, Mauritzen C, Mokssit A, Peterson T and Prather M 2007 Historical overview of climate change science; In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds) Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M and Miller H L (Cambridge, New York: Cambridge University Press).

  • Wayne R P 1991 Chemistry of Atmosphere, 2nd edn (Oxford: Clarendon Press).

  • West J J, Fiore A M, Naik V, Horowitz L W, Schwarzkopf M D and Mauzerall D L M 2007 Ozone air quality and radiative forcing consequences of changes in ozone precursor emissions; Geophys. Res. Lett. 34 L06806, doi: 10.1029/2006GL029173.

    Article  Google Scholar 

  • World Meteorological Organization 1994 Scientific Assessment of Ozone Depletion: Global Ozone Research and Monitoring Project – Report # 37.

  • Zerefos C, Contopoulos G and Skalkens G 2009 Twenty years of ozone decline; Proceedings of Symposium for the 20th Anniversary of the Montreal Protocol, doi: 10.1007/978-90-481-2469-5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P K Jana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jana, P.K., Saha, D.K. & Sarkar, D. Contribution of some ozone depleting substances (ODS) and greenhouse gases (GHGs) on total column ozone growth at Srinagar (34°N, 74.8°E), India. J Earth Syst Sci 122, 239–252 (2013). https://doi.org/10.1007/s12040-012-0246-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-012-0246-y

Keywords

Navigation