Skip to main content
Log in

Magnesium Trimethoxyphenylporphyrin Chain Controls Energy Dissipation in the presence of Cholesterol

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A magnesium porphyrin compound, [Mg(TMPP)(H2O)].(CH3COCH3)2H2O 1 (TMPP = 5,10, 15,20-tetrakis(3,4,5-trimethoxyphenyl)porphyrin) has been synthesized and characterized using single crystal X-ray diffraction and other spectroscopic analysis. The luminescence properties of compound 1 were studied at different concentrations. At higher concentration (3 × 10−3 M), treatment of 1 with cholesterol enhanced the luminescence when excited at Soret band, demonstrating the role of lipid in controlling porphyrin-porphyrin interaction for tuning the bulk photophysical properties. However, at lower concentration (10−5 M) of porphyrin, there was no significant change in luminescence intensity in the presence of cholesterol. It suggests some role of lipids in light harvesting systems where chlorophyll is present at higher concentration.

A magnesium porphyrin compound, [Mg(TMPP)(H2O)].(CH3COCH3)2H2O 1 (TMPP = 5,10,15,20-tetrakis(3,4,5-trimethoxyphenyl)porphyrin) was synthesized and structurally characterized using single crystal X-ray diffraction and other spectroscopic analysis. The luminescence properties of compound 1 were studied at different concentrations. At higher concentration (3 x 10-3 M), treatment of compound 1 with cholesterol enhanced fluorescence demonstrating the role of lipid in controlling porphyrin-porphyrin interaction for tuning the bulk photo-physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ghosh A, Mobin S M, Frohlich R, Butcher R J, Maity D K and Ravikanth M 2010 Effect of five membered versus six membered meso-substituents on structure and electronic properties of Mg(II) porphyrins: A combined experimental and theoretical study Inorg. Chem. 49 8287

    Article  CAS  Google Scholar 

  2. Ikbal A Sk, Brahma S and Rath S P 2012 Building-up remarkably stable magnesium porphyrin polymers self-assembled via bidentate axial ligands: Synthesis, structure, surface morphology, and effect of bridging ligands Inorg. Chem. 51 9666

    Article  Google Scholar 

  3. Abdian N and Dehghani H 2013 Novel molecular complexation between meso-tetraarylporphyrinato magnesium(II) and phosphorus(III) chloride Inorg. Chem. Commun. 36 77

    Article  Google Scholar 

  4. D’Souza F, Khouly E I, Gaddes S, McCarty A L, Karr P A, Zandler M E, Araki Y and Ito O 2005 Self-assembled via axial coordination magnesium porphyrin-imidazole appended fullerene dyad: Spectroscopic, electrochemical, computational, and photochemical studies J. Phys. Chem. B 109 10107

    Article  Google Scholar 

  5. Oshea D F, Miller M A, Matsueda H and Lindsey J S 1996 Investigation of the scope of heterogeneous and homogeneous procedures for preparing magnesium chelates of porphyrins, hydroporphyrins, and phthalocyanines Inorg. Chem. 35 7325

    Article  CAS  Google Scholar 

  6. Wasielewski M R 2009 Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems Acc. Chem. Res. 42 1910

    Article  CAS  Google Scholar 

  7. Drain C M, Goldberg I, Sylvain I and Falber A 2005 Synthesis and applications of supramolecular porphyrinic materials Top. Curr. Chem. 245 55

    CAS  Google Scholar 

  8. Balaban T S 2005 Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems Acc. Chem. Res. 38 612

    Article  CAS  Google Scholar 

  9. Balaban T S, Tamiaki H and Holzwarth A R 2005 Chlorins programmed for self-assembly Top. Curr. Chem. 258 1

    Article  CAS  Google Scholar 

  10. Willstatter R and Stoll A 1918 In Untersuchungenuber die Assimilation der Kohlensaure (Berlin: Springer)

  11. Bhuyan J, Sarkar R and Sarkar S 2011 A magnesium porphyrin bicarbonate complex with CO2 modulated photosystem I action Angew. Chem. Int. Ed. 50 10603

    Article  CAS  Google Scholar 

  12. Kirchhoff H, Hinz H J and Rosgen J 2003 Aggregation and fluorescence quenching of chlorophyll a of the light-harvesting complex II from spinach in vitro Biochim. Biophys. Acta 1606 105

    Article  CAS  Google Scholar 

  13. Agostiano A, Cosma P, Trotta M, Monsu –Scolaro L and Micali N 2002 Chlorophyll a behavior in aqueous solvents: Formation of nanoscale self-assembled complexes J. Phys. Chem. B 106 12820

    Article  CAS  Google Scholar 

  14. Boussaad S, DeRose J A and Leblanc R M 1995 Nanoscale visualization of microcrystalline chlorophyll a investigated with scanning tunneling microscopy Chem. Phys. Lett. 246 107

    Article  CAS  Google Scholar 

  15. Bhuyan J and Sarkar S 2011 Self-assembly of magnesium and zinc trimethoxyphenylporphyrin polymer as nanospheres and nanorods Cryst. Growth Des. 11 5410

    Article  CAS  Google Scholar 

  16. Chow H, Serlin R and Strouse C E 1975 The crystal and molecular structure and absolute configuration of ethyl chlorophyllide a-dihydrate. Model for the different spectral forms of chlorophyll a J. Am. Chem. Soc. 97 7230

    Article  CAS  Google Scholar 

  17. Greenwood N N and Earnshaw A 1984 In Chemistry of the elements (Oxford, UK: Pergamon Press) p. 127

    Google Scholar 

  18. Ballschmiter K and Katz J J 1969 An infrared study of chlorophyll-chlorophyll and chlorophyll-water interactions J. Am. Chem. Soc. 91 2661

    Article  CAS  Google Scholar 

  19. Fredj A B and Ruiz-López M F 2010 Theoretical study of chlorophyll a hydrates formation in aqueous organic solvents J. Phys. Chem. B 114 681

    Article  Google Scholar 

  20. Vladkov R 2000 Chlorophyll a self-assembly in polar solvent–water mixtures J. Photochem. Photobiol. 71 71

  21. Terashima I, Fujita T, Inoue T, Chow W S and Oguchi R 2009 Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green Plant Cell Physiol. 50 684

    Article  CAS  Google Scholar 

  22. Maxwell K and Johnson G N 2000 Chlorophyll fluorescence—a practical guide J. Exp. Bot. 51 659

    CAS  Google Scholar 

  23. Kowalska D and Steer R P 2008 Quenching of MgTPP and ZnTPP fluorescence by molecular oxygen J. Photochem. Photobiol. A Chem. 195 223

    Article  CAS  Google Scholar 

  24. Krüger T P J, Ilioaia C, Johnson M P, Ruban A V and Grondelle R 2014 Disentangling the low-energy states of the major light-harvesting complex of plants and their role in photoprotection Biochim. Biophys. Acta 1837 1027

    Article  Google Scholar 

  25. Beddard G S, Carlin S E and Porter G 1976 Concentration quenching of chlorophyll fluorescence in bilayer lipid vesicles and liposomes Chem. Phys. Lett. 43 27

    Article  CAS  Google Scholar 

  26. Krause G H and Weis E 1991 Chlorophyll fluorescence and photosynthesis: The basics Annu. Rev. Plant Physiol. Plant Mol. Biol. 42 313

    Article  CAS  Google Scholar 

  27. Robeson J L and Tilton R D 1995 Effect of concentration quenching on fluorescence recovery after photobleaching measurements Biophys. J. 68 2145

    Article  CAS  Google Scholar 

  28. Beddard G S and Porter G 1976 Concentration quenching in chlorophyll Nature 260 366

    Article  CAS  Google Scholar 

  29. Lindsey J S and Woodford J N 1995 A simple method for preparing magnesium porphyrins Inorg. Chem. 34 1063

    Article  CAS  Google Scholar 

  30. Zhang J, Zhang P, Zhang Z and Wei X 2009 Spectroscopic and kinetic studies of photochemical reaction of magnesium tetraphenylporphyrin with oxygen J. Phys. Chem. A 113 5367

    Article  CAS  Google Scholar 

  31. Saleh R Y and Straub D K 198913C NMR spectra of tetra(3,4,5-trimethoxyphenyl)porphyrin and its zinc and iron(III) complexes Inorg. Chim. Acta 156 9

    Article  CAS  Google Scholar 

  32. Rutkowska-Zbik D, Witko M and Fiedor L 2013 Ligation of water to magnesium chelates of biological importance J. Mol. Model. 19 4661

    Article  CAS  Google Scholar 

  33. Ezzayani K, Belkhiria M S, Najmudin S, Bonifácio C and Nasri H 2013 Aqua(4-cyanopyridine- N 4)(5, 10,15,20-tetraphenylporphyrinato-4 N)magnesium Acta Cryst. E 69 17

    Article  Google Scholar 

  34. Dove A P, Gibson V C, Marshall E L, White A J P and Williams D J 2004 Magnesium and Zinc Complexes of a Potentially Tridentate β-diketiminate ligand Dalton Trans. 570

  35. Strouse C E 1973 The crystal and molecular structure of ethyl chlorophyllide a⋅2H2O and its relationship to the structure and aggregation of chlorophyll a Proc. Nat. Acad. Sci. USA 71 325

    Article  Google Scholar 

  36. Maji S, Kumar A, Pal K and Sarkar S 2005 Reversible penta- and hexacoordination motifs in [Co(TMPP)] resulting in interchange of 1D and 2D supramolecular designs Inorg. Chem. 44 7277

    Article  CAS  Google Scholar 

  37. Ghoroghchian P P, Frail P R, Susumu K, Park T H, Wu S P, Uyeda H T, Hammer D A and Therien M J 2005 Broad spectral domain fluorescence wavelength modulation of visible and near-infrared emissive polymersomes J. Am. Chem. Soc. 127 15388

    Article  CAS  Google Scholar 

  38. Lang K, Mosinger J and Wagnerova D M 2004 Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy Coord. Chem. Rev. 248 321

    Article  CAS  Google Scholar 

  39. Roach T and Liszkay A K 2014 Regulation of photosynthetic electron transport and photoinhibition Curr. Protein Pept. Sci. 15 351

    Article  CAS  Google Scholar 

  40. Barber J 1978 Biophysics of photosynthesis Rep. Prog. Phys. 41 1157

    Article  CAS  Google Scholar 

  41. (a) Jiang J, Zhang H, Kang Y, Bina D, Lo C and Blankenshipb R E 2012 Characterization of the Peridinin–Chlorophyll a−Protein Complex in the Dinoflagellate SymbiodiniumBiochim. Biophys. Acta 1817 983; (b) Lambers J W and Terpstra W 1985 Inactivation of Chlorophyllase by Negatively Charged Plant Membrane Lipids Biochim. Biophys. Acta 831 225

  42. Bhuyan J and Sarkar S 2010 Oxidative degradation of zinc porphyrin in comparison with its iron analogue Chem. Eur. J. 16 10649

    Article  CAS  Google Scholar 

  43. Takashima H, Fujimoto E, Hirai C and Tsukahara K 2008 Synthesis and spectroscopic properties of reconstituted zinc-myoglobin appending a DNA-binding platinum(II) complex Chem. Biodivers. 5 2101

    Article  CAS  Google Scholar 

  44. Csik G, Balog E, Voszka I, Tolgyesi F, Olumi D, Maillard P. and Momenteau M 1998 Glycosylated derivatives of tetraphenyl porphyrin: Photophysical characterization, self-aggregation and membrane binding J. Photochem. Photobiol. B 44 216

    Article  CAS  Google Scholar 

  45. Krumova S B, Koehorsta R B M, Bóta A, Páli T, Hoek A, Garab G and Amerongena H 2008 Temperature dependence of the lipid packing in thylakoid membranes studied by time- and spectrally resolved fluorescence of merocyanine 540 Biochim. Biophys. Acta 1778 2823

    Article  CAS  Google Scholar 

  46. Lee A G 1975 Fluorescence studies of chlorophyll a incorporated into lipid mixtures, and interpretation of the “phase” diagram Biochim. Biophys. Acta 413 11

    Article  CAS  Google Scholar 

  47. Ehrenberg B, Malik Z and Nitzan Y 1985 Fluorescence spectral changes of hematoporphyrin derivative upon binding to lipid vesicles, staphylococcus aureus and escherichia coli cells J. Photochem. Photobiol. 41 429

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by start-up grant (YSS/2015/ 000394) from SERB, DST, New Delhi. Authors are thankful to Dr. Md. Harunar Rashid, Department of Chemistry, Rajiv Gandhi University, Itanagar for the use of fluorescence spectrophotometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JAGANNATH BHUYAN.

Additional information

Supplementary Information (SI)

CCDC 1061635 contain the supplementary crystallographic data for complex 1. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The UV-Visible, IR, luminescence spectra are available as Supplementary Information for this article at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 843 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BORAH, K.D., SINGH, N.G. & BHUYAN, J. Magnesium Trimethoxyphenylporphyrin Chain Controls Energy Dissipation in the presence of Cholesterol. J Chem Sci 129, 449–455 (2017). https://doi.org/10.1007/s12039-017-1251-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1251-0

Keywords

Navigation