Skip to main content
Log in

Sol-gel-cum-hydrothermal synthesis of mesoporous Co-Fe@Al2O3−MCM-41 for methylene blue remediation

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A combined sol-gel-cum-hydrothermal method has been employed to synthesize novel monometallic (Mn, Fe, Co) and bimetallic (Co-Fe, Mn-Co, Fe-Mn) nanoparticles loaded onto Al 2 O 3−MCM-41. Powder XRD, N 2 sorption, field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) measurements show that the materials possess mesoporosity, high surface area and nanosize. Monometallic Fe, Co and Mn @Al 2 O 3−MCM-41 and bimetallic Co-Fe, Fe-Mn and Mn-Co @Al 2 O 3−MCM-41 materials were tested for methylene blue remediation from aqueous media. In the present study, Co-Fe@Al 2 O 3−MCM-41 was found to be an excellent adsorbent. The adsorption efficiency of Co-Fe@Al 2 O 3−MCM-41 has been studied as a function of adsorbent dose and pH of the solution. Maximum adsorption of methylene blue was obtained at high pH values of the solution. Framework mesoporosity, high surface area, and narrow pore distribution are the key factors for an efficient adsorption of methylene blue on Co-Fe@Al 2 O 3−MCM-41.

Bimetallic Co-Fe@Al2O3−MCM-41 material was identified as the best adsorbent for methylene blue which safely accommodates the dye on its suitable mesoporous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Scheme 1
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  1. Tan K B, Vakili M, Horri B A, Poh P E, Abdullah A Z and Salamatinia B 2015 Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms Sep. Purif. Technol. 150 229

    Article  CAS  Google Scholar 

  2. Dias E M and Petit C 2015 Towards the use of metal–organic frameworks for water reuse: A review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field J. Mater. Chem. A 3 22484

    Article  CAS  Google Scholar 

  3. Khin M M, Nair A S, Babu V J, Murugan R and Ramakrishna S 2012 A review on nanomaterials for environmental remediation Energy Environ. Sci. 5 8075

    Article  CAS  Google Scholar 

  4. Yusuf M, Elfghi F M, Zaidi S A, Abdullah E C and Khan M A 2015 Applications of graphene and its derivatives as an adsorbent for heavy metal and dye removal: A systematic and comprehensive overview RSC Adv. 5 50392

    Article  CAS  Google Scholar 

  5. Bonakala S and Balasubramanian S 2015 Modelling Gas Adsorption in Porous Solids: Roles of Surface Chemistry and Pore Architecture J. Chem. Sci. 127 1687

    Article  CAS  Google Scholar 

  6. Huang C -H, Chang K -P, Oua H -D, Chiang Y -C and Wanga C -F 2011 Adsorption of cationic dyes onto mesoporous silica Microporous Mesoporous Mater. 141 102

    Article  CAS  Google Scholar 

  7. Bhaumik A 2002 Mesoporous titanium phosphates and related molecular sieves: Synthesis, characterization and applications J. Chem. Sci. 114 451

    Article  CAS  Google Scholar 

  8. Sui Z -Y, Cui Y, Zhu J -H and Han B -H 2013 Preparation of Three-Dimensional Graphene Oxide −Polyethylenimine Porous Materials as Dye and Gas Adsorbents ACS Appl. Mater. Interfaces 5 9172

    Article  CAS  Google Scholar 

  9. He X, Male K B, Nesterenko P N, Brabazon D, Paull B and Luong J H T 2013 Adsorption and Desorption of Methylene Blue on Porous Carbon Monoliths and Nanocrystalline Cellulose ACS Appl. Mater. Interfaces 5 8796

    Article  CAS  Google Scholar 

  10. Ma J, Yu F, Zhou L, Jin L, Yang M, Luan J, Tang Y, Fan H, Yuan Z and Chen J 2012 Enhanced Adsorptive Removal of Methyl Orange and Methylene Blue from Aqueous Solution by Alkali-Activated Multiwalled Carbon Nanotubes ACS Appl. Mater. Interfaces 4 5749

    Article  CAS  Google Scholar 

  11. Han B, Zhanga F, Fenga Z, Liub S, Denga S, Wanga Y and Wanga Y 2014 A designed Mn 2 O 3/MCM-41 nanoporous composite for methyleneblue and rhodamine B removal with high efficiency Ceram. Int. 40 8093

    Article  CAS  Google Scholar 

  12. Yagub M T, Sen T K, Afroze S and Ang H M 2014 Dye and its removal from aqueous solution by adsorption: A review Adv. Colloid Interface Sci. 209 172

    Article  CAS  Google Scholar 

  13. Jyothi D, Deshpande P A, Venugopal B R, Chandrasekaran S and Madras G 2012 Transition metal oxide loaded MCM catalysts for photocatalytic degradation of dyes J. Chem. Sci. 124 385

    Article  CAS  Google Scholar 

  14. Merka O, Yarovyi V, Bahnemann D W and Wark M 2011 pH-Control of the Photocatalytic Degradation Mechanism of Rhodamine B over Pb 3Nb 4 O 13 J. Phys. Chem. C 115 8014

    Article  CAS  Google Scholar 

  15. Zhou X, Yang H, Wang C, Mao X, Wang Y, Yang Y and Liu G 2010 Visible Light Induced Photocatalytic Degradation of Rhodamine B on One-Dimensional Iron Oxide Particles J. Phys. Chem. C 114 17051

    Article  CAS  Google Scholar 

  16. Guo B, Shen H, Shu K, Zeng Y and Ning W 2009 The study of the relationship between pore structure and photocatalysis of mesoporous TiO 2 J. Chem. Sci. 121 317

    Article  CAS  Google Scholar 

  17. Uddin M T, Nicolas Y, Olivier C, Toupance T, Muiller M M, Kleebe H J, Rachut K, Ziegler J, Klein A and Jaegermann W 2013 Preparation of RuO 2/TiO 2 Mesoporous Heterostructures and Rationalization of Their Enhanced Photocatalytic Properties by Band Alignment Investigations J. Phys. Chem. C 117 22098

    Article  CAS  Google Scholar 

  18. Jain A, Lodha S, Punjabi P B, Sharma V K and Ameta S C 2009 A study of catalytic behaviour of aromatic additives on the photo–Fenton degradation of phenol red J. Chem. Sci. 121 1027

    Article  CAS  Google Scholar 

  19. Tian S, Zhang J, Chen J., Kong L, Lu J, Ding F and Xiong Y 2013 Fe 2(MoO4) 3 as an Effective Photo-Fenton-like Catalyst for the Degradation of Anionic and Cationic Dyes in a Wide pH Range Ind. Eng. Chem. Res. 52 13333

    Article  CAS  Google Scholar 

  20. Parida K M and Pradhan A C 2010 Fe/meso-Al 2 O 3: An Efficient Photo-Fenton Catalyst for the Adsorptive Degradation of Phenol Ind. Eng. Chem. Res. 49 8310

    Article  CAS  Google Scholar 

  21. Pradhan A C and Parida K M 2012 Facile synthesis of mesoporous composite Fe/Al 2 O 3–MCM-41: An efficient adsorbent/catalyst for swift removal of methylene blue and mixed dyes J. Mater. Chem. 22 7567

    Article  CAS  Google Scholar 

  22. Hsu C A, Wen T N, Su Y C, Jiang Z B, Chen C W and Shyur L F 2012 Biological Degradation of Anthroquinone and Azo Dyes by a Novel Laccase from Lentinus sp Environ. Sci. Technol. 46 5109

    Article  CAS  Google Scholar 

  23. Swathi R S and Sebastian K L 2012 Excitation energy transfer from dye molecules to doped graphene J. Chem. Sci. 124 233

    Article  CAS  Google Scholar 

  24. Bi H, Xie X Yin K, Zhou Y, Wan S, He L, Xu F, Banhart F, Sun L and Ruoff R S 2012 Spongy Graphene as a Highly Efficient and Recyclable Sorbent for Oils and Organic Solvents Adv Funct. Mater. 22 4421

    Article  CAS  Google Scholar 

  25. Ramesha G K, Kumara A V, Muralidhara H B and Sampath S 2011 Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes J. Colloid Interface Sci. 361 270

    Article  CAS  Google Scholar 

  26. Chowdhury S and Balasubramanian R 2014 Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater Adv. Colloid Interface Sci. 204 35

    Article  CAS  Google Scholar 

  27. Jiang S -D, Tang G, Ma Y F, Hu Y and Song L 2015 Synthesis of nitrogen-doped graphene −ZnS quantum dots composites with highly efficient visible light photodegradation Mater. Chem. Phys. 151 34

    Article  CAS  Google Scholar 

  28. Lam K F, Yeung K L and Mckay G 2007 Selective mesoporous adsorbents for Cr\(_{2}\textit {O}_{7}^{\mathrm {2-}}\) and Cu 2+ separation Microporous Mesoporous Mater. 100 191

    Article  CAS  Google Scholar 

  29. Chen X, Lam K F, Zhang Q, Pan B, Arruebo M and Yeung K L 2009 Synthesis of Highly Selective Magnetic Mesoporous Adsorbent J. Phys. Chem. C 113 9804

    Article  CAS  Google Scholar 

  30. Pelekani C and Snoeyink V L 2000 Competitive adsorption between atrazine and methylene blue on activated carbon: The importance of pore size distribution Carbon 38 1423

    Article  CAS  Google Scholar 

  31. Eftekhari S, Habibi-Yangjeh A and Sohrabnezhad S 2010 Application of AlMCM-41 for competitive adsorption of methylene blue and Rhodamine B: Thermodynamic and kinetic studies J. Hazard. Mater. 178 349

    Article  CAS  Google Scholar 

  32. Nguyen T B Hwang M J and Ryu K–S 2012 High adsorption capacity of V-doped TiO 2 for decolorization of methylene blue Appl. Surf. Sci. 258 7299

    Article  Google Scholar 

  33. Gutierrez-Alejandre A, Larrubia M A, Ramirez J and Busca G 2006 FT-IR evidence of the interaction of benzothiophene with the hydroxyl groups of H-MFI and H-MOR zeolites Vib. Spectrosc. 41 42

    Article  CAS  Google Scholar 

  34. Parida K M, Pradhan A C, Das J and Sahu N 2009 Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method Mater. Chem. Phys. 113 244

    Article  CAS  Google Scholar 

  35. Guthrie C P and Reardon E J 2008 Metastability of MCM-41 and Al-MCM-41 J. Phys. Chem. A 112 3386

    Article  CAS  Google Scholar 

  36. Konovalova T A, Gao Y, Schad R and Kispert L D 2001 Photooxidation of Carotenoids in Mesoporous MCM-41, Ni-MCM-41 and Al-MCM-41 Molecular Sieves J. Phys. Chem. B 105 7459

    Article  CAS  Google Scholar 

  37. Li S, Xu Q, Chen J and Guo Y 2008 Study and Characterization of Al-MCM-41 Prepared with the Assistance of Supercritical CO 2 Ind. Eng. Chem. Res. 47 8211

    Article  CAS  Google Scholar 

  38. Brunaure S, Deming L S, Deming W E and Teller E 1940 On a Theory of the van der Waals Adsorption of Gases J. Am. Chem. Soc. 62 723

    Google Scholar 

  39. Tanev P T and Pinnavaia T J 1996 Mesoporous Silica Molecular Sieves Prepared by Ionic and Neutral Surfactant Templating: A Comparison of Physical Properties Chem. Mater. 8 2068

    Article  CAS  Google Scholar 

  40. Goyne K W, Zimmerman A R, Newalkar B L, Komarneni S, Brantley S L and Chorover J 2002 Surface Charge of Variable Porosity Al2O 3(s) and SiO 2(s) Adsorbents J. Porous Mater. 9 243

    Article  CAS  Google Scholar 

  41. Selvaraj M and Pandurangan A 2004 Comparison of Mesoporous Zn-Al-MCM-41 and Al-MCM-41Molecular Sieves in the Production of p-Cymene by Isopropylation of Toluene Ind. Eng. Chem. Res. 43 2399

    Article  CAS  Google Scholar 

  42. Greenwood N N and Earnshaw A 1998 In Chemistry of the Elements (UK: Reed Educational and Professional Publishing) p.1341

  43. Selvaraj M, Sinha P K, Lee K, Ahn I, Pandurangan A and Lee T G 2005 Synthesis and characterization of Mn–MCM-41 and Zr–Mn-MCM-41 Microporous Mesoporous Mater. 78 139

    Article  CAS  Google Scholar 

  44. Atchudan R, Pandurangan A and Joo J 2013 Synthesis of multilayer graphene balls on mesoporous Co-MCM-41 molecular sieves by chemical vapour deposition method Microporous Mesoporous Mater. 175 161

    Article  CAS  Google Scholar 

  45. Moya C, Batlle X and Labarta A 2015 The effect of oleic acid on the synthesis of Fe 3−xO4 nanoparticles over a wide size range Phys. Chem. Chem. Phys. 17 27373

    Article  CAS  Google Scholar 

  46. Arulmozhi K T and Mythili N 2013 Studies on the chemical synthesis and characterization of lead oxide nanoparticles with different organic capping agents AIP Adv. 122122 1

    Google Scholar 

  47. Churchill H, Teng H and Hazen R M 2004 Correlation of pH-dependent surface interaction forces to amino acid adsorption: Implications for the origin of life Am. Mineral. 89 1048

    Article  CAS  Google Scholar 

  48. Hu Q H, Qiao S Z, Haghseresht F, Wilson M A and Lu G Q 2006 Adsorption Study for Removal of Basic Red Dye Using Bentonite Ind. Eng. Chem. Res. 45 733

    Article  CAS  Google Scholar 

  49. Sengupta A K 2016 In Ion Exchange and Solvent Extraction: A Series of Advances (Boca Raton: CRC Press) vol. 22 p. 178

    Google Scholar 

  50. Papirer E 2000 In Adsorption on Silica Surfaces (New York: CRC Press) vol. 90 p. 442

    Google Scholar 

  51. Lau Y-Y, Wong Y-S, Teng T-T, Morad N M and Rafatullah S-A O 2015 Degradation of cationic and anionic dyes in coagulation–flocculation process using bi-functionalized silica hybrid with aluminum-ferric as auxiliary agent RSC Adv. 5 34206

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Amaresh Chandra Pradhan thanks IIT Madras for Postdoctoral Fellowship. The instrumental facilities established under the FIST Scheme of SERC division of DST, Ministry of Science and Technology, New Delhi, have been very helpful to carry out this work. Mr. A. Narayanan and Mrs. S. Srividya carried out BET and XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to AMARESH C PRADHAN or G RANGA RAO.

Additional information

Supplementary Information (SI)

Additional information pertaining to FTIR spectrum (Figure S1) and methylene blue adsorbed (%) on Co-Fe@Al 2 O 3−MCM-41 material (Figure S2) are given in the Supporting Information, which is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 183 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PRADHAN, A.C., PAUL, A. & RAO, G.R. Sol-gel-cum-hydrothermal synthesis of mesoporous Co-Fe@Al2O3−MCM-41 for methylene blue remediation. J Chem Sci 129, 381–395 (2017). https://doi.org/10.1007/s12039-017-1230-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1230-5

Keywords

Navigation