Skip to main content
Log in

Solvothermal syntheses, crystal structures, optical and thermal properties of new selenidogermanate and polyselenidogermanate

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

New selenidogermanate salts [NH 4] 2[H 2N(CH 3) 2] 2Ge 2Se 6 (1) and [Ni(dien) 2] 2Ge 2Se 5(Se 2) (2) (dien = diethylenetriamine), and a selenidogermanate complex [{Ni(tepa)} 2(μ-Ge 2Se 6)] (3) (tepa = tetraethylenepentamine) were prepared by solvothermal reactions. Compounds 1 and 2 consist of discrete [Ge 2Se 6] 4− and [Ge 2Se 7] 4− anions, and NH\(_{4}^{+}\), [H 2N(CH 3) 2] + and [Ni(dien) 2] 2+ counter cations, respectively. The [Ge 2Se 6] 4− anion is constructed by two tetrahedral GeSe 4 building units via edge-sharing. In 2, two tetrahedral GeSe 4 units are linked by a corner and a Se–Se bond to form a polyselenidogermanate anion [Ge 2Se 7] 4− containing a five-membered ring Ge 2Se 3. The dimeric [Ge 2Se 6] 4− anion acts as a bridging ligand via the trans terminal Se atoms to link two [Ni(tepa)] 2+ cations, resulting in neutral complex 3. The Ni 2+ ion in 2 is coordinated by two tridentate dien ligands, while it is coordinated by a pentadentate tepa ligand and a selenidogermanate anion in 3. The different coordination environments of Ni 2+ ions indicate the influence of the denticity of ethylene polyamines on the formation of selenidogermanates in the presence of transition metal ions. The compounds 13 exhibit optical band gaps between 2.06 and 2.35 eV.

The syntheses, structural determination,optical and thermal properties of new selenidogermanate salts, [NH4]2[H2N(CH3)2]2Ge2Se6 (1) and [Ni(dien)2]2Ge2Se5(Se2) (2), and a selenidogermanate complex [{Ni(tepa)}2(μ-Ge2Se6)] (3) are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wang K Y, Feng M L, Kong D N, Liang S J, Wu L and Huang X Y 2012 Layered indium chalcogenidoantimonates [Me 2,NH 2] 2In 2Sb 2 S 7−xSe x (x = 0, 2.20, 4.20, 7) with tunable band gaps and photocatalytic properties CrystEngComm 14 90

    Article  CAS  Google Scholar 

  2. Haddadpour S, Mellullis M, Staesche H, Mariappan C R, Roling B, Clérac R and Dehnen S 2009 Inorganic frameworks from selenidotetrelate anions [T 2Se 6] 4− (T = Ge, Sn): Synthesis, structures, and ionic conductivity of [K 2(H 2O) 3][MnGe 4Se 10] and (NMe 4)2[MSn 4Se 10] (M = Mn, Fe) Inorg. Chem. 48 1689

    Article  CAS  Google Scholar 

  3. Li J R and Huang X Y 2011 [(Me) 2 NH 2] 0.75[Ag 1.25 SnSe 3]: A three-dimensionally microporous chalcogenide exhibiting framework flexibility upon ion-exchange Dalton Trans. 40 387

    Google Scholar 

  4. Zhang Q C, Bu X H, Lin Z E, Biasini M, Beyemann W P and Feng P Y 2007 Metal-complex-decorated homochiral heterobimetallic telluride single-stranded helix Inorg. Chem. 46 7262

    Article  CAS  Google Scholar 

  5. Zhao L D, Lo S H, He J Q, Li H, Biswas K, Androulakis J, Wu C I, Hogan T P, Chung D Y, Dravid V P and Kanatzidis M G 2011 High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS by second phase nanostructures J. Am. Chem. Soc. 133 20476

    Article  CAS  Google Scholar 

  6. Xiong W W, Miao J W, Ye K Q, Wang Y, Liu B and Zhang Q C 2015 Threading chalcogenide layers with polymer chains Angew. Chem. Int. Ed. 54 546

    CAS  Google Scholar 

  7. Sheldrick W S and Wachhold M 1998 Chalcogenidometalates of the heavier group 14 and 15 elements Coord. Chem. Rev. 176 211

    Article  CAS  Google Scholar 

  8. Li J, Chen Z, Wang R J and Proserpio D M 1999 Low temperature route towards new materials: Solvothermal synthesis of metal chalcogenides in ethylenediamine Coord. Chem. Rev. 190–192 707

    Article  Google Scholar 

  9. Dehnen S and Melullis M 2007 A coordination chemistry approach towards ternary M/14/16 anions Coord. Chem. Rev. 251 1259

    Article  CAS  Google Scholar 

  10. Zhou J, Dai J, Bian G Q and Li C Y 2009 Solvothermal synthesis of group 13–15 chalcogenidometalates with chelating organic amines Coord. Chem. Rev. 253 1221

    Article  CAS  Google Scholar 

  11. Xiong W W and Zhang Q C 2015 Surfactants as promising media for the preparation of crystalline inorganic materials Angew. Chem. Int. Ed. 54 11616

    Article  CAS  Google Scholar 

  12. Eulenberger G 1982 Ternary thallium chalcogenides with T 14Ge 2 S 6 structure Monatsh. Chem. 113 859

    Article  CAS  Google Scholar 

  13. Krebs V B and Muller H 1983 Selenogermanates from aqueous solution: Preparation and structure of Na 4Ge 2 Se 6⋅16H 2O Z. Anorg. Allg. Chem. 496 47

    Article  CAS  Google Scholar 

  14. Eisenmann B and Hansa J 1993 Crystal structure of tetrapotassium hexaselenodigermanate, K 4Ge 2Se 6 Z. Kristallogr. 203 301

    CAS  Google Scholar 

  15. Melullis M, Brandmayer M K and Dehnen S 2006 Ortho-chalcogenotetrelate anions as chelating ligands: Syntheses and characterization of [K 6(MeOH) 9][Sn 2 Se 6][Cr(en) 2(SnSe 4)] 2, [Na(H 2O) 4][Cr(en) 3] 2[GeS 3OH] 2 [Cr(en) 2(GeS 4)], and [Ba(H 2O) 10][{Cr(en)} 2(GeSe 4)2] Z. Anorg. Allg. Chem. 632 64

    Article  CAS  Google Scholar 

  16. Morris C D, Malliakas C D and Kanatzidis M G 2011 Germanium selenophosphates: The incommensurately modulated 1/ [Ge 4−x P xSe\(_{12}^{4-}\)] and the molecular [Ge 2 P 2Se 14] 6− Inorg. Chem. 50 10241

    Article  CAS  Google Scholar 

  17. Chen Y K, Chen M C, Zhou L J, Chen L and Wu L M 2013 Syntheses, structures, and nonlinear optical properties of quaternary chalcogenides: Pb 4Ga 4GeQ 12 (Q = S, Se) Inorg. Chem. 52 8334

    Article  CAS  Google Scholar 

  18. Ward M D, Pozzi E A, Duyne R P V and Ibers J A 2014 Syntheses, structures, and optical properties of the indium/germanium selenides Cs 4In 8GeSe 16, CsInSe 2, and CsInGeSe 4 J. Solid State Chem. 212 191

    Article  CAS  Google Scholar 

  19. Park C W, Pell M A and Ibers J A 1996 Electrochemical synthesis of [NEt 4] 2[enH] 2[Ge 2Se 6] and [NEt 4] 4[Sn 4Se 10] Inorg. Chem. 35 4555

    Article  CAS  Google Scholar 

  20. Parise J B and Tan K 1996 Synthesis and structural characterization using synchrotron radiation of [(C 6H 13 N 2) 2(H 3O)(H 2O)][AgGe 4S 10] (dabco-AgGS-SB2): Knitting sulfide metal clusters to form frameworks Chem. Commun. 27 1687

    Article  Google Scholar 

  21. Cahill C L and Parise J B 1997 Synthesis and structure of MnGe 4 S 10⋅(C 6 H 14 N 2) ⋅3H 2O: A novel sulfide framework analogous to zeolite Li-A(BW) Chem. Mater. 9 807

    Article  CAS  Google Scholar 

  22. MacLachlan M J, Coombs N, Bedard R L, White S, Thompson L K and Ozin G A 1999 Mesostructured metal germanium sulfides J. Am. Chem. Soc. 121 12005

    Article  CAS  Google Scholar 

  23. Wachhold M, Rangan K K, Lei M, Thorpe M F, Billinge S J L, Petkov V, Heising J and Kanatzidis M G 2000 Mesostructured metal germanium sulfide and selenide materials based on the tetrahedral [Ge 4 S 10] 4− and [Ge 4Se 10] 4− units: Surfactant templated three-dimensional disordered frameworks perforated with worm holes J. Solid State Chem. 152 21

    Article  CAS  Google Scholar 

  24. Trikalitis P N, Rangan K K and Kanatzidis M G 2002 Platinum chalcogenido MCM-41 analogues. High hexagonal order in mesostructured semiconductors based on Pt 2+ and [Ge 4 Q 10] 4− (Q = S, Se) and [Sn 4Se 10] 4− adamantane clusters J. Am. Chem. Soc. 124 2604

    Article  CAS  Google Scholar 

  25. Philippidis A and Trikalitis P N 2009 (H 2 NC 4 H 8 NCH 2 CH 2 NH 2)(HNCH 2 CH 2 NH 2) 3Zn 2Ge 2Se 8: A new, template one-dimensional ternary semiconductor stabilized by mixed organic cations Polyhedron 28 3193

    Article  CAS  Google Scholar 

  26. Zhang B, Feng M L, Cui H H, Du C F, Qi X H, Shen N N and Huang X Y 2015 Syntheses, crystal structures, ion-exchange, and photocatalytic properties of two amine-directed Ge–Sb–S compounds Inorg. Chem. 54 8474

    Article  CAS  Google Scholar 

  27. Lin Y M, Massa W and Dehnen S 2012 Controlling the assembly of chalcogenide anions in ionic liquids: From binary Ge/Se through ternary Ge/Sn/Se to binary Sn/Se frameworks Chem. Eur. J. 18 13427

    Article  CAS  Google Scholar 

  28. Feng M L, Qi X H, Zhang B and Huang X Y 2014 [(Me) 2 NH 2][BiGeS 4]: The first organically directed bismuth thiogermanate with Rb + ion exchange property Dalton Trans. 43 8184

    Article  CAS  Google Scholar 

  29. Han X H, Wang Z Q, Xu J, Liu D and Wang C 2015 A crown-like heterometallic unit as the building block for a 3D In–Ge–S framework Dalton Trans. 44 19768

    Article  CAS  Google Scholar 

  30. Jia D X, Dai J, Zhu Q Y, Cao L H and Lin H H 2005 Solvothermal synthesis of three new dimeric thiogermanates (enH) 4Ge 2 S 6, [Mn(en) 3] 2Ge 2 S 6 and [Ni(en) 3] 2Ge 2 S 6 from germanium dioxide and sulfur powder J. Solid State Chem. 178 874

    Article  CAS  Google Scholar 

  31. Jia D X, Zhu A M, Zhang Y and Deng J 2007 New selenidogermanates with transition-metal complexes as counterions: Solvothermal synthesis, crystal structures, and properties of [Mn(en) 3] 2Ge 2Se 6 and [Fe(dien) 2] 2 Ge 2Se 6 Monatsh. Chem. 138 191

    Article  CAS  Google Scholar 

  32. Lichte J, Näther C and Bensch W 2014 Polymorphism and tautomerism in [dienH 2,][Co(dien) 2][Ge 2 S 6] leading to different hydrogen bonded networks CrystEngComm 16 5551

    Article  CAS  Google Scholar 

  33. Zhou J, An L T, Liu X, Huang L J and Huang X J 2011 Solvothermal synthesis and characterization of two 2-D layered germanium thioantimonates with transition-metal complexes Dalton Trans. 40 11419

    Article  CAS  Google Scholar 

  34. Zhou J, Liu X, Liang G., Liang W., Hu F. and Zhu L. 2013 [Ni(dien) 2] 3[Ge 3Sb 8 S 21] ⋅0.5H 2O: A new 2-D layered thiogermanate–thioantimonate with metal complexes as template ions Inorg. Chem. Comm. 27 92

    Article  CAS  Google Scholar 

  35. Liu G N, Lin J D, Xu Z N, Liu Z F, Guo G C and Huang J S 2011 Spontaneous resolution of a new thiogermanate containing chiral binuclear nickel(II) complexes with achiral triethylenetetramine ligands: A unique water-mediated supramolecular hybrid helix Cryst. Growth. Des. 11 3318

    Article  CAS  Google Scholar 

  36. Zhang Q C, Armatas G and Kanatzidis M G 2009 Activation of tellurium with zintl ions: 1/ {[Ge 5Te 10] 4−}, an inorganic polymer with germanium in three different oxidation states Inorg. Chem. 48 8665

    Article  CAS  Google Scholar 

  37. Almsick T V, Loose A and Sheldrick W S 2005 Solvothermal synthesis and structure of the [Ge 2Se 7] 4− Anion in (enH 2)[{Mn(en) 2(enH)} 2(μ-en)](Ge 2Se 7) 2 and [Mn(dien) 2] 2Ge 2Se 7 Z. Anorg. Allg. Chem. 631 21

    Article  Google Scholar 

  38. Zhang G D, Li P Z, Ding J F, Liu Y, Xiong W W, Nie L N, Wu T, Zhao Y L, Tok A I Y and Zhang Q C 2014 Surfactant-thermal syntheses, structures, and magnetic properties of Mn–Ge–sulfides/selenides Inorg. Chem. 53 10248

    Article  CAS  Google Scholar 

  39. Tang W W, Liang J J, Jiang W Q, Wu B, Zhang Y and Jia D X 2011 The first examples of selenidogermanate salts with lanthanide complex counter cations: Solvothermal syntheses and characterizations of [{Ln(en)3}2(μ−OH)2]Ge2Se6(Ln = E u,H o) and [{Ho(dien)2}2(μ−OH)2]Ge2Se6 Z. Anorg. Allg. Chem. 637 1539

    Article  CAS  Google Scholar 

  40. Chen R H, Tang W W, Liang J J, Jiang W Q, Zhang Y and Jia D X 2012 The first μ-Ge 2Se 8 ligand to lanthanide(III) centers: Solvothermal syntheses and characterizations of lanthanide selenidogermanate complexes with a pentadentate polyamine as a co-ligand Dalton Trans. 41 12439

    Article  CAS  Google Scholar 

  41. Zhou J, Li R, Ling X, Chen R, Hu F and Zeng Y 2013 The first examples of thiogermanate anion [GeS 3(SH)] 3− as a bridging ligand to a lanthanide complex Dalton Trans. 42 1961

    Article  CAS  Google Scholar 

  42. Kromm A and Sheldrick W S 2008 Synthesis and structures of dimanganese(II) complexes with spirotricyclic [ Mn(μ- Ge2Se7) Mn] and [ Mn−Sn2Se6)Mn] cores Z. Anorg. Allg. Chem. 634 1005

    Article  CAS  Google Scholar 

  43. Liu G N, Guo G C, Wang M S, Cai L Z and Huang J S 2010 Five dimeric thiogermanates with transition metal complexes of multidentate chelating amines: Syntheses, structures, magnetism and photoluminescence J. Mol. Struct. 983 104

    Article  CAS  Google Scholar 

  44. Liang J J, Zhao J, Tang W W, Zhang Y and Jia D X 2011 Ethylene polyamine influence on the transition metal thiogermanates: Solvothermal syntheses and characterizations of [Ni(trien) 2] 2Ge 4 S 10 and [{Ni(tepa)} 2(μ-Ge 2 S 6)] Inorg. Chem. Comm. 14 1023

    Article  CAS  Google Scholar 

  45. Chen J F, Jin Q Y, Pan Y L, Zhang Y and Jia D X 2010 Solvothermal syntheses and characterization of new transition metal chalcogenidogermanates [{ Co(tepa)} 2 (μ- Ge2S6)] and [{ M(tepa)} 2(μ- Ge2Se6)] (M = Mn, F e) (tepa=tetraethylenepentamine) Z. Anorg. Allg. Chem. 636 230

    Article  CAS  Google Scholar 

  46. Wendlandt W W and Hecht H G 1966 In Reflectance Spectroscopy (New York: Interscience Publishers)

    Google Scholar 

  47. Sheldrick G M 1997 In SHELXS-97 Program for structure solution (Germany: Universität of Göttingen)

    Google Scholar 

  48. Sheldrick G M 1997 In SHELXL-97 Program for structure refinement (Germany: Universität of Göttingen)

    Google Scholar 

  49. Mitzi D B 2005 Synthesis, structure, and thermal properties of soluble hydrazinium germanium(IV) and tin(IV) selenide salts Inorg. Chem. 44 3755

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21171123), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DINGXIAN JIA.

Additional information

Supplementary Information (SI)

Crystallographic data for the crystal structures reported in this paper have been deposited in the Cambridge Crystallographic Data Center with CCDC Numbers: CCDC–1490346 (1), CCDC–1490347 (2), and CCDC–1490348 (3), which contain supplementary crystallographic data for this paper. Other supplementary data associated with this article can be found in the online version. Supplementary information is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 1.71 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LIU, S., SUN, P., HAN, J. et al. Solvothermal syntheses, crystal structures, optical and thermal properties of new selenidogermanate and polyselenidogermanate. J Chem Sci 129, 167–175 (2017). https://doi.org/10.1007/s12039-017-1224-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1224-3

Keywords

Navigation